25 research outputs found

    Value of tissue harmonic imaging (THI) and contrast harmonic imaging (CHI) in detection and characterisation of breast tumours

    Get PDF
    The purpose of this study was to investigate the extent to which tissue harmonic imaging (THI), speckle reduction imaging (SRI), spatial compounding (SC) and contrast can improve detection and differentiation of breast tumours. We examined 38 patients (14 benign, 24 malignant tumours) with different combinations of THI, SRI and SC. The effect on delineation, margin, tissue differentiation and posttumoral phenomena was evaluated with a three-point score. Additionally, 1oo not palpable tumours (diameters: 4–15 mm) were examined by contrast harmonic imaging (CHI) with power Doppler. After bolus injection (0.5 ml Optison), vascularisation and enhancement were observed for 20 min. The best combination for detection of margin, infiltration, echo pattern and posterior lesion boundary was the combination of SRI level 2 with SC low. THI was helpful for lesions OF more than 1 cm depth. In native Power Doppler, vessels were found in 54 of 100 lesions. Within 5 min after contrast medium (CM) injection, marginal and penetrating vessels increased in benign and malignant tumours and central vessels mostly in carcinomas (p<0.05). A diffuse CM accumulation was observed up to 20 min after injection in malignant tumours only (p<0.05). THI, SRI and SC improved delineation and tissue differentiation. Second-generation contrast agent allowed detection of tumour vascularisation with prolonged enhancement

    Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    Get PDF
    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention

    Loading of oxidizable transmitters into secretory vesicles permits carbon-fiber amperometry

    No full text
    Carbon-fiber amperometry detects oxidizable molecules released by exocytosis. We extended this electrochemical technique to cells that do not normally secrete oxidizable transmitters. We incubated AtT-20 cells, pituitary gonadotropes, cultured cerebellar granule cells, and yeast with high concentrations of dopamine (DA) and observed spontaneous and evoked quantal release of DA by amperometry. The rate of detectable spontaneous amperometric events was used as a measure of loading in AtT-20 cells. With 70 mM DA in the bath, loading was complete within 40 min. Cytoplasmic accumulation preceded vesicular loading. Loading decreased proportionally as the bath DA concentration was lowered. Loading rates were similar at 37 and 25 degrees C and much slower at 15 degrees C. Loading was blocked by bafilomycin A(1), a proton pump inhibitor, but not by bupropion, an inhibitor of the plasma membrane DA transporter. Other cells were tested. Spontaneous quantal events became more frequent and evoked events became larger and more frequent when PC12 cells were loaded with DA. Fluid-phase loading of neurons by short stimulation in DA solutions seemed selective for the synaptic vesicles. Thus, many cell types can be loaded with DA to study spontaneous and evoked exocytosis. The amine molecules enter these cells passively and may become concentrated in acidic vesicles by protonation.X1128sciescopu
    corecore