14 research outputs found

    Mafic alkalic magmatism in central Kachchh, India: a monogenetic volcanic field in the northwestern Deccan Traps

    No full text
    Magmatism in Kachchh, in the northwestern Deccan continental flood basalt province, is represented not only by typical tholeiitic flows and dikes, but also plug-like bodies, in Mesozoic sandstone, of alkali basalt, basanite, melanephelinite and nephelinite, containing mantle nodules. They form the base of the local Deccan stratigraphy and their volcanological context was poorly understood. Based on new and published field, petrographic and geochemical data, we identify this suite as an eroded monogenetic volcanic field. The plugs are shallow-level intrusions (necks, sills, dikes, sheets, laccoliths); one of them is known to have fed a lava flow. We have found local peperites reflecting mingling between magmas and soft sediment, and the remains of a pyroclastic vent composed of non-bedded lapilli tuff breccia, injected by mafic alkalic dikes. The lapilli tuff matrix contains basaltic fragments, glass shards, and detrital quartz and microcline, with secondary zeolites, and there are abundant lithic blocks of mafic alkalic rocks. We interpret this deposit as a maar-diatreme, formed due to phreatomagmatic explosions and associated wall rock fragmentation and collapse. This is one of few known hydrovolcanic vents in the Deccan Traps. The central Kachchh monogenetic volcanic field has > 30 individual structures exposed over an area of similar to 1,800 km(2) and possibly many more if compositionally identical igneous intrusions in northern Kachchh are proven by future dating work to be contemporaneous. The central Kachchh monogenetic volcanic field implies low-degree mantle melting and limited, periodic magma supply. Regional directed extension was absent or at best insignificant during its formation, in contrast to the contemporaneous significant directed extension and vigorous mantle melting under the main area of the Deccan flood basalts. The central Kachchh field demonstrates regional-scale volcanological, compositional, and tectonic variability within flood basalt provinces, and adds the Deccan Traps to the list of such provinces containing monogenetic- and/or hydrovolcanism, namely the Karoo-Ferrar and Emeishan flood basalts, and plateau basalts in Saudi Arabia, Libya, and Patagonia

    Geochemistry of the Palitana flood basalt sequence and the Eastern Saurashtra dykes, Deccan Traps: clues to petrogenesis, dyke???flow relationships, and regional lava stratigraphy

    No full text
    Recent studies of large mafic dyke swarms in the Deccan Traps flood basalt province, India, indicate that some of the correlative lava flows reached several hundred kilometers in length. Here we present field, petrographic, mineral chemical, and whole-rock geochemical (including Sr-Nd iso- topic) data on the Palitana lava sequence and nearby dykes in the Saurashtra region of the northwestern Deccan Traps. These rocks are moderately evolved, many with low-Ti-Nb characteristics. We infer that most dykes are notably (and systematically) less contaminated by ancient continental crust than the Palitana flows, but four dykes are equally or signif- icantly more contaminated, with some of the most extreme Sr-Nd isotopic compositions seen in the entire Deccan Traps (initial ??Nd is as low as ???18.0). A Bhimashankar-type and a Poladpur-type dyke are present several hundred kilometersfrom the type section of these magma types in the Western Ghats escarpment. We find no geochemical correlations between the Palitana sequence and three subsurface sequences in NE Saurashtra containing abundant picritic rocks, surface lavas previously studied from Saurashtra, or the Western Ghats sequence. Intriguingly, the Eastern Saurashtra dykes cannot have been feeders to any of these lava sequences. Feeder dykes of these sequences may be located in southwestern or central Saurashtra, or in the Dhule-Nandurbar Dediapada areas across the Gulf of Cambay, 200???300 km east of Palitana. Our results indicate polycentric flood basalt erup- tions not only on the scale of the Deccan Traps province, but also within the Saurashtra region itself

    Geochemistry of the Palitana flood basalt sequence and the Eastern Saurashtra dykes, Deccan Traps: clues to petrogenesis, dyke-flow relationships, and regional lava stratigraphy

    No full text
    Recent studies of large mafic dyke swarms in the Deccan Traps flood basalt province, India, indicate that some of the correlative lava flows reached several hundred kilometers in length. Here we present field, petrographic, mineral chemical, and whole-rock geochemical (including Sr-Nd isotopic) data on the Palitana lava sequence and nearby dykes in the Saurashtra region of the northwestern Deccan Traps. These rocks are moderately evolved, many with low-Ti-Nb characteristics. We infer that most dykes are notably (and systematically) less contaminated by ancient continental crust than the Palitana flows, but four dykes are equally or significantly more contaminated, with some of the most extreme Sr-Nd isotopic compositions seen in the entire Deccan Traps (initial epsilon(Nd) is as low as -18.0). A Bhimashankar-type and a Poladpur-type dyke are present several hundred kilometers from the type section of these magma types in the Western Ghats escarpment. We find no geochemical correlations between the Palitana sequence and three subsurface sequences in NE Saurashtra containing abundant picritic rocks, surface lavas previously studied from Saurashtra, or the Western Ghats sequence. Intriguingly, the Eastern Saurashtra dykes cannot have been feeders to any of these lava sequences. Feeder dykes of these sequences may be located in southwestern or central Saurashtra, or in the Dhule-NandurbarDediapada areas across the Gulf of Cambay, 200-300 km east of Palitana. Our results indicate polycentric flood basalt eruptions not only on the scale of the Deccan Traps province, but also within the Saurashtra region itself

    Spherulites and thundereggs from pitchstones of the Deccan Traps: geology, petrochemistry, and emplacement environments

    No full text
    Spherulites and thundereggs are rounded, typically spherical, polycrystalline objects found in glassy silicic rocks. Spherulites are dominantly made up of radiating microscopic fibers of alkali feldspar and a silica mineral (commonly quartz). They form due to heterogeneous nucleation in highly supercooled rhyolitic melts or by devitrification of glass. Associated features are lithophysae ("stone bubbles"), which have an exterior (sometimes concentric shells) of fine quartz and feldspar, and internal cavities left by escaping gas; when filled by secondary silica, these are termed thundereggs. Here, we describe four distinct occurrences of spherulites and thundereggs, in pitchstones (mostly rhyolitic, some trachytic) of the Deccan Traps, India. The thundereggs at one locality were previously misidentified as rhyolitic lava bombs and products of pyroclastic extrusive activity. We have characterized the thundereggs petrographically and geochemically and have determined low contents of magmatic water (0.21-0.38 wt.%) in them using Fourier transform infrared spectroscopy. We consider that the spherulite-bearing outcrops at one of the localities are of lava flows, but the other three represent subvolcanic intrusions. Based on the structural disposition of the Deccan sheet intrusions studied here and considerations of regional geology, we suggest that they are cone sheets emplaced from a plutonic center now submerged beneath the Arabian Sea
    corecore