29 research outputs found

    Hyperdimensional Analysis of Amino Acid Pair Distributions in Proteins

    Get PDF
    Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed, and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure analysis

    Imaging tumour hypoxia with positron emission tomography.

    Get PDF
    Hypoxia, a hallmark of most solid tumours, is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. Given its prominent role in oncology, accurate detection of hypoxia is important, as it impacts on prognosis and could influence treatment planning. A variety of approaches have been explored over the years for detecting and monitoring changes in hypoxia in tumours, including biological markers and noninvasive imaging techniques. Positron emission tomography (PET) is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. This review provides an overview of imaging hypoxia with PET, with an emphasis on the advantages and limitations of the currently available hypoxia radiotracers.Cancer Research UK (CRUK) funded the National Cancer Research Institute (NCRI) PET Research Working party to organise a meeting to discuss imaging cancer with hypoxia tracers and Positron Emission Tomography. IF was funded by CRUK and is also supported by the Chief Scientific Office. ALH is supported by CRUK and the Breast Cancer Research Foundation. RM is funded by NIHR Cambridge Biomedical Research Centre.This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/bjc/journal/vaop/ncurrent/full/bjc2014610a.html

    Decentralized COVID-19 testing by means of nanoparticle-based one-step loop-mediated isothermal amplification assay

    No full text
    202210 bckwOther VersionRGCOthersFood and Health Bureau; The Hong Kong Polytechnic Universit

    Quasispecies of the D225G substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 virus from patients with severe disease in Hong Kong, China

    No full text
    The D225G (aspartic acid to glycine) substitution in the hemagglutinin of H1N1 influenza virus may alter its receptor-binding specificity. Direct analysis of polymorphisms in 126 amino acids spanning the receptor-binding site in the hemagglutinin of pandemic H1N1 2009 virus from 117 clinical specimens in Hong Kong found the D225G substitution for 7 (12.5%) of 57 patients with severe disease and for 0 (0%) of 60 patients with mild disease. D225G quasispecies were identified mainly in endotracheal aspirate samples and were identified less frequently in nasopharyngeal aspirate samples from patients with severe disease. Continuous monitoring of the prevalence and tissue tropism of this variant during its circulation among humans is important. © 2010 by the Infectious Diseases Society of America. All rights reserved.link_to_OA_fulltex

    Quasispecies of the D225G substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 virus from patients with severe disease in Hong Kong, China

    Get PDF
    The D225G (aspartic acid to glycine) substitution in the hemagglutinin of H1N1 influenza virus may alter its receptor-binding specificity. Direct analysis of polymorphisms in 126 amino acids spanning the receptor-binding site in the hemagglutinin of pandemic H1N1 2009 virus from 117 clinical specimens in Hong Kong found the D225G substitution for 7 (12.5%) of 57 patients with severe disease and for 0 (0%) of 60 patients with mild disease. D225G quasispecies were identified mainly in endotracheal aspirate samples and were identified less frequently in nasopharyngeal aspirate samples from patients with severe disease. Continuous monitoring of the prevalence and tissue tropism of this variant during its circulation among humans is important. © 2010 by the Infectious Diseases Society of America. All rights reserved.link_to_OA_fulltex
    corecore