27 research outputs found

    Utilization of galactomannan from Gleditsia triacanthos in polysaccharide-based films : effects of interactions between film constituents on film properties

    Get PDF
    The objective of this work was to evaluate the effect of the concentrations of Gleditsia triacanthos galactomannan and glycerol and the presence of corn oil in the physical properties of edible films. The influence of interactions between those constituents on films' permeability to gases (water vapour, CO2 and O2), solubility in water, mechanical properties and colour was evaluated. The effects of those variables were analysed according to a 23 factorial design; regression coefficients were used to understand the influence of each variable (factor) on the studied properties, and a multifactor model was developed. Results show that galactomannan concentration is the most significant factor affecting the studied properties; moreover, the increase of plasticizer concentration and the presence of oil showed to be the most influent in the particular cases of solubility and transport properties (water vapour permeability and O2 permeability), respectively. These results show that galactomannan films' properties can be tailored to allow their use as alternative to non-biodegradable, non-edible packaging materials.The author M. A. Cerqueira is recipient of a fellowship from Fundacao para a Ciencia e Tecnologia (FCT, SFRH/BPD/72753/2010) and B. W. S. Souza is a recipient of a fellowship from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazil (Capes, Brazil)

    Relationship between galactomannan structure and physicochemical properties of films produced thereof

    Get PDF
    In this work five sources of galactomannans, Adenanthera pavonina, Cyamopsis tetragonolobus, Caesalpinia pulcherrima, Ceratonia siliqua and Sophora japonica, presenting mannose/galactose ratios of 1.3, 1.7, 2.9, 3.4 and 5.6, respectively, were used to produce galactomannan-based films. These films were characterized in terms of: water vapour, oxygen and carbon dioxide permeabilities (WVP, O 2 P and CO 2 P); moisture content, water solubility, contact angle, elongation-at-break (EB), tensile strength (TS) and glass transition temperature (T g ). Results showed that films properties vary according to the galactomannan source (different galactose distribution) and their mannose/galactose ratio. Water affinity of mannan and galactose chains and the intermolecular interactions of mannose backbone should also be considered being factors that affect films properties. This work has shown that knowing mannose/galactose ratio of galactomannans is possible to foresee galactomannan-based edible films properties.The authors thank the fellowship (SFRH/BPD/ 72753/2010) from the Fundação para a Ciência e Tecnologia (FCT, Portugal). The authors also thank the FCT Strategic Project of UID/BIO/ 04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-010124-FEDER-027462) and the project BBioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa OperacionalRegionaldoNorte(ON.2–ONovoNorte),QREN,FEDER. Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico – FUNCAP, CE Brazil (CI1-0080-00055.01.00/13)

    Neuroregeneration in neurodegenerative disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration - implantation of viable cells as a therapeutical approach.</p> <p>Discussion</p> <p>Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a "neuroregenerative reserve", that could be exploited by growth factors or stem cells-neurorestoration therapies.</p> <p>Summary</p> <p>In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer's Disease and Parkinson's Disease.</p

    The entorhinal cortex of Megachiroptera: a comparative study of Wahlberg's epauletted fruit bat and the straw-coloured fruit bat

    Full text link
    This study describes the organisation of the entorhinal cortex of the Megachiroptera, Strawcoloured fruit bat and Wahlberg’s epauletted fruit bat. Using Nissl and Timm stains, parvalbumin and SMI-32 immunohistochemistry, we identified 5 fields within the medial(MEA) and lateral (LEA) entorhinal areas. MEA fields ECL and EC are characterised by a poor differentiation between layers II and III, a distinct layer IV and broad, stratified layers V and VI. LEA fields EI, ER and EL are distinguished by cell clusters in layer II, a clear differentiation between layers II and III, a wide columnar layer III, and a broad sublayer Va. Clustering in LEA layer II was more typical of the Straw-coloured fruit bat. Timm-staining was most intense in layers Ib and II across all fields, and layer III of field ER. Parvalbuminlike staining varied along a medio-lateral gradient with highest immunoreactivity in layers II and III of MEA and more lateral fields of LEA. Sparse SMI-32-like immunoreactivity was seen only in Wahlberg’s epauletted fruit bat. Of the neurons in MEA layer II, ovoid stellate cells account for ~38%, polygonal stellate cells for ~8%, pyramidal cells for ~18%, oblique pyramidal cells for ~6%, and other neurons of variable morphology for ~29%. Differences between bats and other species in cellular make-up and cytoarchitecture of layer II may relate to their 3-dimensional habitat. Cytoarchitecture of layer V in conjunction with high encephalisation and structural changes in the hippocampus suggest similarities in efferent hippocampal-entorhinal-cortical interactions between fruit bats and primates
    corecore