102 research outputs found

    Diabetes screening with hemoglobin A1c prior to a change in guideline recommendations: prevalence and patient characteristics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In January 2010, the American Diabetes Association recommended the use of hemoglobin A1c (Hgb A1c) to screen and diagnose diabetes. This study explored the prevalence and clinical context of Hgb A1c tests done for non-diabetic primary care patients for the three years prior to the release of the new guidelines. We sought to determine the provision of tests in non-diabetic patients age 19 or over, patients age 45 and over (eligible for routine diabetes screening), the annual change in the rate of this screening test, and the patient characteristics associated with the provision of Hgb A1c screening.</p> <p>Methods</p> <p>We conducted a retrospective study using data routinely collected in Electronic Medical Records. The participants were thirteen community-based family physicians in Toronto, Ontario. We calculated the proportion of non diabetic patients who had at least one Hbg A1c done in three years. We used logistic generalized estimating equation with year treated as a continuous variable to test for a non-zero slope in yearly Hbg A1c provision. We modelled screening using multivariable logistic regression.</p> <p>Results</p> <p>There were 11,792 non-diabetic adults. Of these, 1,678 (14.2%; 95%CI 13.6%-14.9%) had at least one Hgb A1c test done; this was higher for patients 45 years of age or older (20.2%; 95% CI 19.3% - 21.2%). The proportion of non-diabetic patients with an A1c test increased from 5.2% in 2007 to 8.8% in 2009 (p < 0.0001 for presence of slope). Factors associated with significantly greater adjusted odds ratios of having the test done included increasing diastolic blood pressure, increasing fasting glucose, increasing body mass index, increasing age, as well as male gender and presence of hypertension, but not smoking status or LDL cholesterol. Patients living in the highest income quintile neighbourhoods had significantly lower odds ratios of having this test done than those in the lowest quintile (p < 0.001).</p> <p>Conclusions</p> <p>A large and increasing proportion of the non-diabetic patients we studied have had an Hgb A1c for screening prior to guidelines recommending the test for this purpose. Several risk factors for cardiovascular disease or diabetes were associated with the provision of the Hgb A1c. Early uptake of the test may represent appropriate utilization.</p

    Variation in the Large-Scale Organization of Gene Expression Levels in the Hippocampus Relates to Stable Epigenetic Variability in Behavior

    Get PDF
    Despite sharing the same genes, identical twins demonstrate substantial variability in behavioral traits and in their risk for disease. Epigenetic factors-DNA and chromatin modifications that affect levels of gene expression without affecting the DNA sequence-are thought to be important in establishing this variability. Epigenetically-mediated differences in the levels of gene expression that are associated with individual variability traditionally are thought to occur only in a gene-specific manner. We challenge this idea by exploring the large-scale organizational patterns of gene expression in an epigenetic model of behavioral variability.To study the effects of epigenetic influences on behavioral variability, we examine gene expression in genetically identical mice. Using a novel approach to microarray analysis, we show that variability in the large-scale organization of gene expression levels, rather than differences in the expression levels of specific genes, is associated with individual differences in behavior. Specifically, increased activity in the open field is associated with increased variance of log-transformed measures of gene expression in the hippocampus, a brain region involved in open field activity. Early life experience that increases adult activity in the open field also similarly modifies the variance of gene expression levels. The same association of the variance of gene expression levels with behavioral variability is found with levels of gene expression in the hippocampus of genetically heterogeneous outbred populations of mice, suggesting that variation in the large-scale organization of gene expression levels may also be relevant to phenotypic differences in outbred populations such as humans. We find that the increased variance in gene expression levels is attributable to an increasing separation of several large, log-normally distributed families of gene expression levels. We also show that the presence of these multiple log-normal distributions of gene expression levels is a universal characteristic of gene expression in eurkaryotes. We use data from the MicroArray Quality Control Project (MAQC) to demonstrate that our method is robust and that it reliably detects biological differences in the large-scale organization of gene expression levels.Our results contrast with the traditional belief that epigenetic effects on gene expression occur only at the level of specific genes and suggest instead that the large-scale organization of gene expression levels provides important insights into the relationship of gene expression with behavioral variability. Understanding the epigenetic, genetic, and environmental factors that regulate the large-scale organization of gene expression levels, and how changes in this large-scale organization influences brain development and behavior will be a major future challenge in the field of behavioral genomics

    Broad Epigenetic Signature of Maternal Care in the Brain of Adult Rats

    Get PDF
    BACKGROUND: Maternal care is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. In the rat, these effects are reversed by cross-fostering, demonstrating that they are defined by epigenetic rather than genetic processes. However, epigenetic changes at a single gene promoter are unlikely to account for the range of outcomes and the persistent change in expression of hundreds of additional genes in adult rats in response to differences in maternal care. METHODOLOGY/PRINCIPAL FINDINGS: We examine here using high-density oligonucleotide array the state of DNA methylation, histone acetylation and gene expression in a 7 million base pair region of chromosome 18 containing the NR3C1 gene in the hippocampus of adult rats. Natural variations in maternal care are associated with coordinate epigenetic changes spanning over a hundred kilobase pairs. The adult offspring of high compared to low maternal care mothers show epigenetic changes in promoters, exons, and gene ends associated with higher transcriptional activity across many genes within the locus examined. Other genes in this region remain unchanged, indicating a clustered yet specific and patterned response. Interestingly, the chromosomal region containing the protocadherin-α, -β, and -γ (Pcdh) gene families implicated in synaptogenesis show the highest differential response to maternal care. CONCLUSIONS/SIGNIFICANCE: The results suggest for the first time that the epigenetic response to maternal care is coordinated in clusters across broad genomic areas. The data indicate that the epigenetic response to maternal care involves not only single candidate gene promoters but includes transcriptional and intragenic sequences, as well as those residing distantly from transcription start sites. These epigenetic and transcriptional profiles constitute the first tiling microarray data set exploring the relationship between epigenetic modifications and RNA expression in both protein coding and non-coding regions across a chromosomal locus in the mammalian brain

    Fasting and High-Fat Diet Alter Histone Deacetylase Expression in the Medial Hypothalamus

    Get PDF
    Increasing attention is now being given to the epigenetic regulation of animal and human behaviors including the stress response and drug addiction. Epigenetic factors also influence feeding behavior and metabolic phenotypes, such as obesity and insulin sensitivity. In response to fasting and high-fat diets, the medial hypothalamus changes the expression of neuropeptides regulating feeding, metabolism, and reproductive behaviors. Histone deacetylases (HDACs) are involved in the epigenetic control of gene expression and alter behavior in response to a variety of environmental factors. Here, we examined the expression of HDAC family members in the medial hypothalamus of mice in response to either fasting or a high-fat diet. In response to fasting, HDAC3 and −4 expression levels increased while HDAC10 and −11 levels decreased. Four weeks on a high-fat diet resulted in the increased expression of HDAC5 and −8. Moreover, fasting decreased the number of acetylated histone H3- and acetylated histone H4-positive cells in the ventrolateral subdivision of the ventromedial hypothalamus. Therefore, HDACs may be implicated in altered gene expression profiles in the medial hypothalamus under different metabolic states

    Do intrauterine or genetic influences explain the foetal origins of chronic disease? A novel experimental method for disentangling effects

    Get PDF
    Background There is much evidence to suggest that risk for common clinical disorders begins in foetal life. Exposure to environmental risk factors however is often not random. Many commonly used indices of prenatal adversity (e.g. maternal gestational stress, gestational diabetes, smoking in pregnancy) are influenced by maternal genes and genetically influenced maternal behaviour. As mother provides the baby with both genes and prenatal environment, associations between prenatal risk factors and offspring disease maybe attributable to true prenatal risk effects or to the "confounding" effects of genetic liability that are shared by mother and offspring. Cross-fostering designs, including those that involve embryo transfer have proved useful in animal studies. However disentangling these effects in humans poses significant problems for traditional genetic epidemiological research designs. Methods We present a novel research strategy aimed at disentangling maternally provided pre-natal environmental and inherited genetic effects. Families of children aged 5 to 9 years born by assisted reproductive technologies, specifically homologous IVF, sperm donation, egg donation, embryo donation and gestational surrogacy were contacted through fertility clinics and mailed a package of questionnaires on health and mental health related risk factors and outcomes. Further data were obtained from antenatal records. Results To date 741 families from 18 fertility clinics have participated. The degree of association between maternally provided prenatal risk factor and child outcome in the group of families where the woman undergoing pregnancy and offspring are genetically related (homologous IVF, sperm donation) is compared to association in the group where offspring are genetically unrelated to the woman who undergoes the pregnancy (egg donation, embryo donation, surrogacy). These comparisons can be then examined to infer the extent to which prenatal effects are genetically and environmentally mediated. Conclusion A study based on children born by IVF treatment and who differ in genetic relatedness to the woman undergoing the pregnancy is feasible. The present report outlines a novel experimental method that permits disaggregation of maternally provided inherited genetic and post-implantation prenatal effects

    Maternal Environment Influences Cocaine Intake in Adulthood in a Genotype-Dependent Manner

    Get PDF
    Background: Accumulating epidemiological evidence points to the role of genetic background as a modulator of the capacity of adverse early experiences to give rise to mental illness. However, direct evidence of such gene-environment interaction in the context of substance abuse is scarce. In the present study we investigated whether the impact of early life experiences on cocaine intake in adulthood depends on genetic background. In addition, we studied other behavioral dimensions associated with drug abuse, i.e. anxiety- and depression-related behaviors. Methodology/Principal Findings: For this purpose, we manipulated the maternal environment of two inbred mouse strains, the C57BL/6J and DBA/2J by fostering them with non-related mothers, i.e. the C3H/HeN and AKR strains. These mother strains show respectively high and low pup-oriented behavior. As adults, C57BL/6J and DBA/2J were tested either for cocaine intravenous self-administration or in the elevated plus-maze and forced swim test (FST). We found that the impact of maternal environment on cocaine use and a depression-related behavior depends upon genotype, as cocaine self-administration and behavior in the FST were influenced by maternal environment in DBA/2J, but not in C57BL/6J mice. Anxiety was not influenced by maternal environment in either strain. Conclusions/Significance: Our experimental approach could contribute to the identification of the psychobiological factor

    The developmental impact of prenatal stress, prenatal dexamethasone and postnatal social stress on physiology, behaviour and neuroanatomy of primate offspring: studies in rhesus macaque and common marmoset

    Get PDF
    RATIONALE: Exposure of the immature mammalian brain to stress factors, including stress levels of glucocorticoids, either prenatally or postnatally, is regarded as a major regulatory factor in short- and long-term brain function and, in human, as a major aetiological factor in neuropsychiatric disorders. Experimental human studies are not feasible and animal studies are required to demonstrate causality and elucidate mechanisms. A number of studies have been conducted and reviewed in rodents but there are relatively few studies in primates. OBJECTIVES: Here we present an overview of our published studies and some original data on the effects of: (1) prenatal stress on hypothalamic-pituitary-adrenal (HPA) re/activity and hippocampus neuroanatomy in juvenile-adolescent rhesus macaques; (2) prenatal dexamethasone (DEX) on HPA activity, behaviour and prefrontal cortex neuroanatomy in infant-adolescent common marmosets; (3) postnatal daily parental separation stress on HPA re/activity, behaviour, sleep and hippocampus and prefrontal cortex neuroanatomy in infant-adolescent common marmoset. RESULTS: Prenatal stress increased basal cortisol levels and reduced neurogenesis in macaque. Prenatal DEX was without effect on HPA activity and reduced social play and skilled motor behaviour in marmoset. Postnatal social stress increased basal cortisol levels, reduced social play, increased awakening and reduced hippocampal glucocorticoid and mineralocorticoid receptor expression in marmoset. CONCLUSIONS: Perinatal stress-related environmental events exert short- and long-term effects on HPA function, behaviour and brain status in rhesus macaque and common marmoset. The mechanisms mediating the enduring effects remain to be elucidated, with candidates including increased basal HPA function and epigenetic programming

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood

    Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study

    Get PDF
    OBJECTIVES: To describe the characteristics and outcomes of patients with acute respiratory distress syndrome with or without spontaneous breathing and to investigate whether the effects of spontaneous breathing on outcome depend on acute respiratory distress syndrome severity. DESIGN: Planned secondary analysis of a prospective, observational, multicentre cohort study. SETTING: International sample of 459 ICUs from 50 countries. PATIENTS: Patients with acute respiratory distress syndrome and at least 2 days of invasive mechanical ventilation and available data for the mode of mechanical ventilation and respiratory rate for the 2 first days. INTERVENTIONS: Analysis of patients with and without spontaneous breathing, defined by the mode of mechanical ventilation and by actual respiratory rate compared with set respiratory rate during the first 48 hours of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: Spontaneous breathing was present in 67% of patients with mild acute respiratory distress syndrome, 58% of patients with moderate acute respiratory distress syndrome, and 46% of patients with severe acute respiratory distress syndrome. Patients with spontaneous breathing were older and had lower acute respiratory distress syndrome severity, Sequential Organ Failure Assessment scores, ICU and hospital mortality, and were less likely to be diagnosed with acute respiratory distress syndrome by clinicians. In adjusted analysis, spontaneous breathing during the first 2 days was not associated with an effect on ICU or hospital mortality (33% vs 37%; odds ratio, 1.18 [0.92-1.51]; p = 0.19 and 37% vs 41%; odds ratio, 1.18 [0.93-1.50]; p = 0.196, respectively ). Spontaneous breathing was associated with increased ventilator-free days (13 [0-22] vs 8 [0-20]; p = 0.014) and shorter duration of ICU stay (11 [6-20] vs 12 [7-22]; p = 0.04). CONCLUSIONS: Spontaneous breathing is common in patients with acute respiratory distress syndrome during the first 48 hours of mechanical ventilation. Spontaneous breathing is not associated with worse outcomes and may hasten liberation from the ventilator and from ICU. Although these results support the use of spontaneous breathing in patients with acute respiratory distress syndrome independent of acute respiratory distress syndrome severity, the use of controlled ventilation indicates a bias toward use in patients with higher disease severity. In addition, because the lack of reliable data on inspiratory effort in our study, prospective studies incorporating the magnitude of inspiratory effort and adjusting for all potential severity confounders are required
    corecore