32 research outputs found

    Suppression of Chlorella vulgaris Growth by Cadmium, Lead, and Copper Stress and Its Restoration by Endogenous Brassinolide

    Get PDF
    Brassinosteroids play a significant role in the amelioration of various abiotic and biotic stresses. In order to elaborate their roles in plants subjected to heavy metals stress, Chlorella vulgaris cultures treated with 10−8 M brassinolide (BL) were exposed to 10−6–10−4 M heavy metals (cadmium, lead and copper) application. Under heavy metals stress, the growth and chemical composition (chlorophyll, monosaccharides, and protein content) have been decreased during the first 48 h of cultivation. The inhibitory effect of heavy metals on C. vulgaris cultures was arranged in the following order: copper > lead > cadmium. C. vulgaris cultures treated with BL in the absence or presence of heavy metals showed no differences in the endogenous level of BL. On the other hand, treatment with heavy metals results in BL level very similar to that of control cell cultures. These results suggest that the activation of brassinosteroids biosynthesis, via an increase of endogenous BL, is not essential for the growth and development of C. vulgaris cells in response to heavy metals stress. Simultaneously, BL enhanced the content of indole-3-acetic acid, zeatin, and abscisic acid in cultures treated with heavy metals. Levels per cell of chlorophylls, protein, and monosaccharides are all increased by BL treatment when compared to nontreated control cells. Application of BL to C. vulgaris cultures reduced the accumulation of heavy metals stress on growth, prevented chlorophyll, monosaccharides, and protein loss, and increased phytochelatins content. The arrested growth of C. vulgaris cells treated with heavy metals was restored by the coapplication of BL. It suggested that BL overcame the inhibitory effect of heavy metals. From these results, it can be concluded that BL plays the positive role in the alleviation of heavy metals stress

    AFLP Analysis of Trichoderma spp. from India Compared with Sequence and Morphological-based Diagnostics

    Get PDF
    Trichoderma species offer considerable potential for controlling aflatoxin contamination in groundnut and other crops. Initial classification of 48 Trichoderma isolates, derived from four different groundnut cultivation sites in India was based on alignment of 28S rDNA sequences to GenBank sequences of ex-type strains. This was found to be substantially more reliable than our routine morphological characterization, but did not provide a comprehensive diagnostic solution, as unique single nucleotide polymorphism (SNP) haplotypes could not be identified for all species. However, all the Trichoderma isolates could be readily distinguished by amplified fragment length polymorphism (AFLP) analysis, based on six primer pair combinations, which generated 234 polymorphic bands. In addition, individual AFLP bands were identified which differentiate closely related species. Similarly, AFLP bands were identified that correlated with different types of antagonism to Aspergillus flavus. The implications of these results for the development of simple polymerase chain reaction (PCR)-based diagnostic assays for antagonistic isolates of Trichoderma is discussed
    corecore