295 research outputs found

    Early-life stress impairs acquisition and retrieval of fear memories:sex-effects, corticosterone modulation, and partial prevention by targeting glucocorticoid receptors at adolescent age

    Get PDF
    The early postnatal period is a sensitive time window that is characterized by several neurodevelopmental processes that define neuronal architecture and function later in life. Here, we examined in young adult mice, using an auditory fear conditioning paradigm, whether stress during the early postnatal period 1) impacts fear acquisition and memory consolidation in male and female mice; 2) alters the fear responsiveness to corticosterone and 3) whether effects of early-life stress (ELS) can be prevented by treating mice with a glucocorticoid (GR) antagonist at adolescence. Male and female mice were exposed to a limited nesting and bedding model of ELS from postnatal day (PND) 2-9 and injected i.p with RU38486 (RU486) at adolescent age (PND 28-30). At two months of age, mice were trained in the fear conditioning (FC) paradigm (with and without post training administration of corticosterone - CORT) and freezing behavior during fear acquisition and contextual and auditory memory retrieval was scored. We observed that ELS impaired fear acquisition specifically in male mice and reduced both contextual and auditory memory retrieval in male and female mice. Acute post-training administration of CORT increased freezing levels during auditory memory retrieval in female mice but reduced freezing levels during the tone presentation in particular in control males. Treatment with RU486 prevented ELS-effects in acquisition in male mice and in females during auditory memory retrieval. In conclusion, this study highlights the long-lasting consequences of early-life stress on fear memory processing and further illustrates 1) the potential of a glucocorticoid antagonist intervention during adolescence to mitigate these effects and 2) the partial modulation of the auditory retrieval upon post training administration of CORT, with all these effects being sex-dependent

    LTP after Stress: Up or Down?

    Get PDF
    When an organism is exposed to a stressful situation, corticosteroid levels in the brain rise. This rise has consequences for behavioral performance, including memory formation. Over the past decades, it has become clear that a rise in corticosteroid level is also accompanied by a reduction in hippocampal long-term potentiation (LTP). Recent studies, however, indicate that stress does not lead to a universal suppression of LTP. Many factors, including the type of stress, the phase of the stress response, the area of investigation, type of LTP, and the life history of the organism determine in which direction LTP will be changed

    Hormonal Regulation of AMPA Receptor Trafficking and Memory Formation

    Get PDF
    Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories

    Interactions between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance

    Get PDF
    One of the core reactions in response to a stressful situation is the activation of the hypothalamus–pituitary–adrenal axis which increases the release of glucocorticoid hormones from the adrenal glands. In concert with other neuro-modulators, such as (nor)adrenaline, these hormones enable and promote cognitive adaptation to stressful events. Recent studies have demonstrated that glucocorticoid hormones and noradrenaline, via their receptors, can both rapidly and persistently regulate the function of excitatory synapses which are critical for storage of information. Here we will review how glucocorticoids and noradrenaline alone and in synergy dynamically tune these synapses in the hippocampus and amygdala, and discuss how these hormones interact to promote behavioral adaptation to stressful situations

    Regulation of Excitatory Synapses and Fearful Memories by Stress Hormones

    Get PDF
    Memories for emotionally arousing and fearful events are generally well retained. From the evolutionary point of view this is a highly adaptive behavioral response aimed to remember relevant information. However, fearful memories can also be inappropriately and vividly (re)expressed, such as in posttraumatic stress disorder. The memory formation of emotionally arousing events is largely modulated by hormones, peptides, and neurotransmitters which are released during and after exposure to these conditions. One of the core reactions in response to a stressful situation is the rapid activation of the autonomic nervous system, which results in the release of norepinephrine in the brain. In addition, stressful events stimulate the hypothalamus–pituitary–adrenal axis which slowly increases the release of glucocorticoid hormones from the adrenal glands. Here we will review how glucocorticoids and norepinephrine regulate the formation of fearful memories in rodents and humans and how these hormones can facilitate the storage of information by regulating excitatory synapses

    Chronic Stress Effects on Hippocampal Structure and Synaptic Function: Relevance for Depression and Normalization by Anti-Glucocorticoid Treatment

    Get PDF
    Exposure of an organism to environmental challenges activates two hormonal systems that help the organism to adapt. As part of this adaptational process, brain processes are changed such that appropriate behavioral strategies are selected that allow optimal performance at the short term, while relevant information is stored for the future. Over the past years it has become evident that chronic uncontrollable and unpredictable stress also exerts profound effects on structure and function of limbic neurons, but the impact of chronic stress is not a mere accumulation of repeated episodes of acute stress exposure. Dendritic trees are reduced in some regions but expanded in others, and cells are generally exposed to a higher calcium load upon depolarization. Synaptic strengthening is largely impaired. Neurotransmitter responses are also changed, e.g., responses to serotonin. We here discuss: (a) the main cellular effects after chronic stress with emphasis on the hippocampus, (b) how such effects could contribute to the development of psychopathology in genetically vulnerable individuals, and (c) their normalization by brief treatment with anti-glucocorticoids

    Application of a pharmacological transcriptome filter identifies a shortlist of mouse glucocorticoid receptor target genes associated with memory consolidation

    Get PDF
    Glucocorticoids regulate memory consolidation, facilitating long-term storage of relevant information to adequately respond to future stressors in similar conditions. This effect of glucocorticoids is well-established and is observed in multiple types of behaviour that depend on various brain regions. By and large, higher glucocorticoid levels strengthen event-related memory, while inhibition of glucocorticoid signalling impairs consolidation. The mechanism underlying this glucocorticoid effect remains unclear, but it likely involves the transcriptional effects of the glucocorticoid receptor (GR). We here used a powerful paradigm to investigate the transcriptional effects of GR in the dorsal hippocampus of mice after training in an auditory fear conditioning task, aiming to identify a shortlist of GR target genes associated to memory consolidation. Therefore, we utilized in an explorative study the properties of selective GR modulators (CORT108297 and CORT118335), alongside the endogenous agonist corticosterone and the classical GR antagonist RU486, to pinpoint GR-dependent transcriptional changes. First, we confirmed that glucocorticoids can modulate memory strength via GR activation. Subsequently, by assessing the specific effects of the available GR-ligands on memory strength, we established a pharmacological filter which we imposed on the hippocampal transcriptome data. This identified a manageable shortlist of eight genes by which glucocorticoids may modulate memory consolidation, warranting in-depth follow-up. Overall, we showcase the strength of the concept of pharmacological transcriptome filtering, which can be readily applied to other research topics with an established role of glucocorticoids
    corecore