259 research outputs found

    Purifying and Reversible Physical Processes

    Get PDF
    Starting from the observation that reversible processes cannot increase the purity of any input state, we study deterministic physical processes, which map a set of states to a set of pure states. Such a process must map any state to the same pure output, if purity is demanded for the input set of all states. But otherwise, when the input set is restricted, it is possible to find non-trivial purifying processes. For the most restricted case of only two input states, we completely characterize the output of any such map. We furthermore consider maps, which combine the property of purity and reversibility on a set of states, and we derive necessary and sufficient conditions on sets, which permit such processes.Comment: 5 pages, no figures, v2: only minimal change

    Charged and rotating AdS black holes and their CFT duals

    Get PDF
    Black hole solutions that are asymptotic to AdS5Ă—S5 AdS_5 \times S^5 or AdS4Ă—S7 AdS_4 \times S^7 can rotate in two different ways. If the internal sphere rotates then one can obtain a Reissner-Nordstrom-AdS black hole. If the asymptotically AdS space rotates then one can obtain a Kerr-AdS hole. One might expect superradiant scattering to be possible in either of these cases. Superradiant modes reflected off the potential barrier outside the hole would be re-amplified at the horizon, and a classical instability would result. We point out that the existence of a Killing vector field timelike everywhere outside the horizon prevents this from occurring for black holes with negative action. Such black holes are also thermodynamically stable in the grand canonical ensemble. The CFT duals of these black holes correspond to a theory in an Einstein universe with a chemical potential and a theory in a rotating Einstein universe. We study these CFTs in the zero coupling limit. In the first case, Bose-Einstein condensation occurs on the boundary at a critical value of the chemical potential. However the supergravity calculation demonstrates that this is not to be expected at strong coupling. In the second case, we investigate the limit in which the angular velocity of the Einstein universe approaches the speed of light at finite temperature. This is a new limit in which to compare the CFT at strong and weak coupling. We find that the free CFT partition function and supergravity action have the same type of divergence but the usual factor of 4/3 is modified at finite temperature.Comment: 18 pages, RevTex, 2 figures; v2: references adde

    Partition functions and elliptic genera from supergravity

    Full text link
    We develop the spacetime aspects of the computation of partition functions for string/M-theory on AdS(3) xM. Subleading corrections to the semi-classical result are included systematically, laying the groundwork for comparison with CFT partition functions via the AdS(3)/CFT(2) correspondence. This leads to a better understanding of the "Farey tail" expansion of Dijkgraaf et. al. from the point of view of bulk physics. Besides clarifying various issues, we also extend the analysis to the N=2 setting with higher derivative effects included.Comment: 34 page

    Black hole entropy functions and attractor equations

    Get PDF
    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N=2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions.Comment: 21 pages,LaTeX,minor change

    Rolling Tachyon in Brane World Cosmology from Superstring Field Theory

    Get PDF
    The pressureless tachyonic matter recently found in superstring field theory has an over-abundance problem in cosmology. We argue that this problem is naturally solved in the brane inflationary scenario if almost all of the tachyon energy is drained (via its coupling to the inflaton and matter fields) to heating the universe, while the rest of the tachyon energy goes to a network of cosmic strings (lower-dimensional BPS D-branes) produced during the tachyon rolling at the end of inflation.Comment: 4 pages, one figure. This version quantifies constraints on various phenomenological models for tachyon deca

    2D Gravity on AdS2AdS_2 with Chern-Simons Corrections

    Full text link
    We study 2D Maxwell-dilaton gravity with higher order corrections given by the Chern-Simons term. The model admits three distinctive AdS2AdS_2 vacuum solutions. By making use of the entropy function formalism we find the entropy of the solutions which is corrected due to the presence of the Chern-Simons term. We observe that the form of the correction depends not only on the coefficient of the Chern-Simons term, but also on the sign of the electric charge; pointing toward the chiral nature of the dual CFT. Using the asymptotic symmetry of the theory as well as requiring a consistent picture we can find the central charge and the level of U(1) current. Upon uplifting the solutions to three dimensions we get purely geometric solutions which will be either AdS3AdS_3 or warped AdS3AdS_3 with an identification.Comment: 15 pages; V2: refs adde

    Chiral Supergravity

    Get PDF
    We study the linearized approximation of N=1 topologically massive supergravity around AdS3. Linearized gravitino fields are explicitly constructed. For appropriate boundary conditions, the conserved charges demonstrate chiral behavior, so that chiral gravity can be consistently extended to chiral supergravity.Comment: 30 page

    Finite gravitational action for higher derivative and stringy gravities

    Get PDF
    We generalize the local surface counterterm prescription suggested in Einstein gravity for higher derivative (HD) and Weyl gravities. Explicitly, the surface counterterm is found for three- and five-dimensional HD gravities. As a result, the gravitational action for asymptotically AdS spaces is finite and gravitational energy-momentum tensor is well-defined. The holographic trace anomaly for d2 and d4 boundary (gauge) QFT dual to above HD gravity is calculated from gravitational energy-momentum tensor. The calculation of AdS black hole mass in HD gravity is presented within above prescrition. The comparison with the standard prescription (using reference spacetime) is done.Comment: LaTeX file, 21 page

    Dying Dyons Don't Count

    Full text link
    The dyonic 1/4-BPS states in 4D string theory with N=4 spacetime supersymmetry are counted by a Siegel modular form. The pole structure of the modular form leads to a contour dependence in the counting formula obscuring its duality invariance. We exhibit the relation between this ambiguity and the (dis-)appearance of bound states of 1/2-BPS configurations. Using this insight we propose a precise moduli-dependent contour prescription for the counting formula. We then show that the degeneracies are duality-invariant and are correctly adjusted at the walls of marginal stability to account for the (dis-)appearance of the two-centered bound states. Especially, for large black holes none of these bound states exists at the attractor point and none of these ambiguous poles contributes to the counting formula. Using this fact we also propose a second, moduli-independent contour which counts the "immortal dyons" that are stable everywhere.Comment: 27 pages, 2 figures; one minus sign correcte
    • …
    corecore