925 research outputs found
A tunable coupling scheme for implementing high-fidelity two-qubit gates
The prospect of computational hardware with quantum advantage relies
critically on the quality of quantum gate operations. Imperfect two-qubit gates
is a major bottleneck for achieving scalable quantum information processors.
Here, we propose a generalizable and extensible scheme for a two-qubit coupler
switch that controls the qubit-qubit coupling by modulating the coupler
frequency. Two-qubit gate operations can be implemented by operating the
coupler in the dispersive regime, which is non-invasive to the qubit states. We
investigate the performance of the scheme by simulating a universal two-qubit
gate on a superconducting quantum circuit, and find that errors from known
parasitic effects are strongly suppressed. The scheme is compatible with
existing high-coherence hardware, thereby promising a higher gate fidelity with
current technologies
Heat-kernel coefficients for oblique boundary conditions
We calculate the heat-kernel coefficients, up to , for a U(1) bundle on
the 4-Ball for boundary conditions which are such that the normal derivative of
the field at the boundary is related to a first-order operator in boundary
derivatives acting on the field. The results are used to place restrictions on
the general forms of the coefficients. In the specific case considered, there
can be a breakdown of ellipticity.Comment: 9 pages, JyTeX. One reference added and minor corrections mad
Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding
Texturing can be used to functionalize the surface of plastic parts and, in particular, to modify the interaction with fluids. Wetting functionalization can be used for microfluidics, medical devices, scaffolds, and more. In this research, hierarchical textures were generated on steel mold inserts using femtosecond laser ablation to transfer on plastic parts surface via injection molding. Different textures were designed to study the effects of various hierarchical geometries on the wetting behavior. The textures are designed to create wetting functionalization while avoiding high aspect ratio features, which are complex to replicate and difficult to manufacture at scale. Nano-scale ripples were generated over the micro-scale texture by creating laser-induced periodic surface structures. The textured molds were then replicated by micro-injection molding using polypropylene and poly(methyl methacrylate). The static wetting behavior was investigated on steel inserts and molded parts and compared to the theoretical values obtained from the Cassie-Baxter and Wenzel models. The experimental results showed correlations between texture design, injection molding replication, and wetting properties. The wetting behavior on the polypropylene parts followed the Cassie-Baxter model, while for PMMA, a composite wetting state of Cassie-Baxter and Wenzel was observed
Electron-ion recombination of Si IV forming Si III: Storage-ring measurement and multiconfiguration Dirac-Fock calculations
The electron-ion recombination rate coefficient for Si IV forming Si III was
measured at the heavy-ion storage-ring TSR. The experimental electron-ion
collision energy range of 0-186 eV encompassed the 2p(6) nl n'l' dielectronic
recombination (DR) resonances associated with 3s to nl core excitations, 2s
2p(6) 3s nl n'l' resonances associated with 2s to nl (n=3,4) core excitations,
and 2p(5) 3s nl n'l' resonances associated with 2p to nl (n=3,...,infinity)
core excitations. The experimental DR results are compared with theoretical
calculations using the multiconfiguration Dirac-Fock (MCDF) method for DR via
the 3s to 3p n'l' and 3s to 3d n'l' (both n'=3,...,6) and 2p(5) 3s 3l n'l'
(n'=3,4) capture channels. Finally, the experimental and theoretical plasma DR
rate coefficients for Si IV forming Si III are derived and compared with
previously available results.Comment: 13 pages, 9 figures, 3 tables. Accepted for publication in Physical
Review
Anisotropic fragmentation in low-energy dissociative recombination
On a dense energy grid reaching up to 75 meV electron collision energy the
fragmentation angle and the kinetic energy release of neutral dissociative
recombination fragments have been studied in a twin merged beam experiment. The
anisotropy described by Legendre polynomials and the extracted rotational state
contributions were found to vary on a likewise narrow energy scale as the
rotationally averaged rate coefficient. For the first time angular dependences
higher than 2 order could be deduced. Moreover, a slight anisotropy at
zero collision energy was observed which is caused by the flattened velocity
distribution of the electron beam.Comment: 8 pages, 4 figures; The Article will be published in the proceedings
of DR 2007, a symposium on Dissociative Recombination held in Ameland, The
Netherlands (18.-23. July 2008); Reference 19 has been published meanwhile in
S. Novotny, PRL 100, 193201 (2008
A rigorous treatment of the perturbation theory for many-electron systems
Four point correlation functions for many electrons at finite temperature in
periodic lattice are analyzed by the perturbation theory with respect to the
coupling constant. The correlation functions are characterized as a limit of
finite dimensional Grassmann integrals. A lower bound on the radius of
convergence and an upper bound on the perturbation series are obtained. The
perturbation series up to second order is numerically implemented along with
the volume-independent upper bounds on the sum of the higher order terms in 2
dimensional case.Comment: 61 page
The heat kernel coefficient for oblique boundary conditions
We present a method for the calculation of the heat kernel
coefficient of the heat operator trace for a partial differential operator of
Laplace type on a compact Riemannian manifold with oblique boundary conditions.
Using special case evaluations, restrictions are put on the general form of the
coefficients, which, supplemented by conformal transformation techniques,
allows the entire smeared coefficient to be determined.Comment: 30 pages, LaTe
Systematics of c-axis Phonons in the Thallium and Bismuth Based Cuprate Superconductors
We present grazing incidence reflectivity measurements in the far infrared
region at temperatures above and below Tc for a series of thallium (Tl2Ba2CuO6,
Tl2Ba2CaCu2O8) and bismuth (Bi2Sr2CuO6, Bi2Sr2CaCu2O8, and
Bi(2-x)Pb(x)Sr2CaCu2O8) based cuprate superconductors. From the spectra, which
are dominated by the c-axis phonons, longitudinal frequencies (LO) are directly
obtained. The reflectivity curves are well fitted by a series of Lorentz
oscillators. In this way the transverse (TO) phonon frequencies were accurately
determined. On the basis of the comparative study of the Bi and Tl based
cuprates with different number of CuO2 layers per unit cell, we suggest
modifications of the assignment of the main oxygen modes. We compare the LO
frequencies in Bi2Sr2CaCu2O8 and Tl2Ba2Ca2Cu3O10 obtained from intrinsic
Josephson junction characteristics with our measurements, and explain the
discrepancy in LO frequencies obtained by the two different methods.Comment: 8 pages Revtex, 6 eps figures, 3 tables, to appear in Phys. Rev.
The repulsive lattice gas, the independent-set polynomial, and the Lov\'asz local lemma
We elucidate the close connection between the repulsive lattice gas in
equilibrium statistical mechanics and the Lovasz local lemma in probabilistic
combinatorics. We show that the conclusion of the Lovasz local lemma holds for
dependency graph G and probabilities {p_x} if and only if the independent-set
polynomial for G is nonvanishing in the polydisc of radii {p_x}. Furthermore,
we show that the usual proof of the Lovasz local lemma -- which provides a
sufficient condition for this to occur -- corresponds to a simple inductive
argument for the nonvanishing of the independent-set polynomial in a polydisc,
which was discovered implicitly by Shearer and explicitly by Dobrushin. We also
present some refinements and extensions of both arguments, including a
generalization of the Lovasz local lemma that allows for "soft" dependencies.
In addition, we prove some general properties of the partition function of a
repulsive lattice gas, most of which are consequences of the alternating-sign
property for the Mayer coefficients. We conclude with a brief discussion of the
repulsive lattice gas on countably infinite graphs.Comment: LaTex2e, 97 pages. Version 2 makes slight changes to improve clarity.
To be published in J. Stat. Phy
- …