15,751 research outputs found
Spherical Orbifolds for Cosmic Topology
Harmonic analysis is a tool to infer cosmic topology from the measured
astrophysical cosmic microwave background CMB radiation. For overall positive
curvature, Platonic spherical manifolds are candidates for this analysis. We
combine the specific point symmetry of the Platonic manifolds with their deck
transformations. This analysis in topology leads from manifolds to orbifolds.
We discuss the deck transformations of the orbifolds and give eigenmodes for
the harmonic analysis as linear combinations of Wigner polynomials on the
3-sphere. These provide new tools for detecting cosmic topology from the CMB
radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1011.427
Crossover between different regimes of inhomogeneous superconductivity in planar superconductor-ferromagnet hybrids
We studied experimentally the effect of a stripe-like domain structure in a
ferromagnetic BaFe_{12}O_{19} substrate on the magnetoresistance of a
superconducting Pb microbridge. The system was designed in such a way that the
bridge is oriented perpendicular to the domain walls. It is demonstrated that
depending on the ratio between the amplitude of the nonuniform magnetic field
B_0, induced by the ferromagnet, and the upper critical field H_{c2} of the
superconducting material, the regions of the reverse-domain superconductivity
in the H-T plane can be isolated or can overlap (H is the external magnetic
field, T is temperature). The latter case corresponds to the condition
B_0/H_{c2}<1 and results in the formation of superconductivity above the
magnetic domains of both polarities. We discovered the regime of edge-assisted
reverse-domain superconductivity, corresponding to localized superconductivity
near the edges of the bridge above the compensated magnetic domains. Direct
verification of the formation of inhomogeneous superconducting states and
external-field-controlled switching between normal state and inhomogeneous
superconductivity were obtained by low-temperature scanning laser microscopy.Comment: 11 pages, 12 figure
Reverse-domain superconductivity in superconductor-ferromagnet hybrids: effect of a vortex-free channel on the symmetry of I-V characteristics
We demonstrate experimentally that the presence of a single domain wall in an
underlying ferromagnetic BaFe_{12}O_{19} substrate can induce a considerable
asymmetry in the current (I) - voltage (V) characteristics of a superconducting
Al bridge. The observed diode-like effect, i.e. polarity-dependent critical
current, is associated with the formation of a vortex-free channel inside the
superconducting area which increases the total current flowing through the
superconducting bridge without dissipation. The vortex-free region appears only
for a certain sign of the injected current and for a limited range of the
external magnetic field
Direct Observation of Condon Domains in Silver by Hall Probes
Using a set of micro Hall probes for the detection of the local induction,
the inhomogeneous Condon domain structure has been directly observed at the
surface of a pure silver single crystal under strong Landau quantization in
magnetic fields up to 10 T. The inhomogeneous induction occurs in the
theoretically predicted part of the H-T Condon domain phase diagram.
Information about size, shape and orientation of the domains is obtained by
analyzing Hall probes placed along and across the long sample axis and by
tilting the sample. On a beryllium surface the induction inhomogeneity is
almost absent although the expected induction splitting here is at least ten
times higher than in silver.Comment: 4 pages, 6 figures, submitted to PR
Hysteresis in the de Haas-van Alphen Effect
A hysteresis loop is observed for the first time in the de Haas-van Alphen
(dHvA) effect of beryllium at low temperatures and quantizing magnetic field
applied parallel to the hexagonal axis of the single crystal. The irreversible
behavior of the magnetization occurs at the paramagnetic part of the dHvA
period in conditions of Condon domain formation arising by strong enough dHvA
amplitude. The resulting extremely nonlinear response to a very small
modulation field offers the possibility to find in a simple way the Condon
domain phase diagram. From a harmonic analysis, the shape and size of the
hysteresis loop is constructed.Comment: 4 pages, 5 figures, submitted to PR
Electron propagation in crossed magnetic and electric fields
Laser-atom interaction can be an efficient mechanism for the production of
coherent electrons. We analyze the dynamics of monoenergetic electrons in the
presence of uniform, perpendicular magnetic and electric fields. The Green
function technique is used to derive analytic results for the field--induced
quantum mechanical drift motion of i) single electrons and ii) a dilute Fermi
gas of electrons. The method yields the drift current and, at the same time it
allows us to quantitatively establish the broadening of the (magnetic) Landau
levels due to the electric field: Level number k is split into k+1 sublevels
that render the th oscillator eigenstate in energy space. Adjacent Landau
levels will overlap if the electric field exceeds a critical strength. Our
observations are relevant for quantum Hall configurations whenever electric
field effects should be taken into account.Comment: 11 pages, 2 figures, submitte
Revivals of quantum wave-packets in graphene
We investigate the propagation of wave-packets on graphene in a perpendicular
magnetic field and the appearance of collapses and revivals in the
time-evolution of an initially localised wave-packet. The wave-packet evolution
in graphene differs drastically from the one in an electron gas and shows a
rich revival structure similar to the dynamics of highly excited Rydberg
states.
We present a novel numerical wave-packet propagation scheme in order to solve
the effective single-particle Dirac-Hamiltonian of graphene and show how the
collapse and revival dynamics is affected by the presence of disorder. Our
effective numerical method is of general interest for the solution of the Dirac
equation in the presence of potentials and magnetic fields.Comment: 22 pages, 10 figures, 3 movies, to appear in New Journal of Physic
Crystallography on Curved Surfaces
We study static and dynamical properties that distinguish two dimensional
crystals constrained to lie on a curved substrate from their flat space
counterparts. A generic mechanism of dislocation unbinding in the presence of
varying Gaussian curvature is presented in the context of a model surface
amenable to full analytical treatment. We find that glide diffusion of isolated
dislocations is suppressed by a binding potential of purely geometrical origin.
Finally, the energetics and biased diffusion dynamics of point defects such as
vacancies and interstitials is explained in terms of their geometric potential.Comment: 12 Pages, 8 Figure
- …