22,010 research outputs found

    Survival probability in diffractive dijet photoproduction

    Full text link
    We confront the latest H1 and ZEUS data on diffractive dijet photoproduction with next-to-leading order QCD predictions in order to determine whether a rapidity gap survival probability of less than one is supported by the data. We find evidence for this hypothesis when assuming global factorization breaking for both the direct and resolved photon contributions, in which case the survival probability would have to be E_T^jet-dependent, and for the resolved or in addition the related direct initial-state singular contribution only, where it would be independent of E_T^jet.Comment: 8 pages, 7 figures, to appear in the proceedings of the 2008 CERN-DESY workshop on "HERA and the LHC

    Factorization Breaking in Diffractive Photoproduction of Dijets

    Full text link
    We have calculated the diffractive dijet cross section in low-Q^2 ep scattering in the HERA regime. The results of the calculation in LO and NLO are compared to recent experimental data of the H1 collaboration. We find that in LO the calculated cross sections are in reasonable agreement with the experimental results. In NLO, however, some of the cross sections disagree, showing that factorization breaking occurs in that order. By suppressing the resolved contribution by a factor of approximately three, good agreement with all the data is found. The size of the factorization breaking effects in diffractive dijet photoproduction agrees well with absorptive model predictions.Comment: 13 pages, 9 figures. Talk presented at the 12th International Workshop on Deep Inelastic Scattering (DIS 2004), Strbske Pleso, Slovakia, 14-18 April 2004. To appear in the proceeding

    Survival probability for diffractive dijet production in p-pbar collisions from next-to-leading order calculations

    Full text link
    We perform next-to-leading order calculations of the single-diffractive and non-diffractive cross sections for dijet production in proton-antiproton collisions at the Tevatron. By comparing their ratio to the data published by the CDF collaboration for two different center-of-mass energies, we deduce the rapidity-gap survival probability as a function of the momentum fraction of the parton in the antiproton. Assuming Regge factorization, this probability can be interpreted as a suppression factor for the diffractive structure function measured in deep-inelastic scattering at HERA. In contrast to the observations for photoproduction, the suppression factor in proton-antiproton collisions depends on the momentum fraction of the parton in the Pomeron even at next-to-leading order.Comment: 26 pages, 11 figure

    NNLO contributions to jet photoproduction and determination of \alpha_s

    Full text link
    We present the first calculation of inclusive jet photoproduction with next-to-next-to-leading order (NNLO) contributions, obtained from a unified threshold resummation formalism. The leading coefficients for direct photoproduction are computed analytically. Together with the coefficients pertinent to parton-parton scattering, they are shown to agree with those appearing in our full next-to-leading order calculations. For hadron-hadron scattering, numerical agreement is found with a previous calculation of jet production at the Tevatron. We show that the direct and resolved NNLO contributions considerably improve the description of final ZEUS data on jet photoproduction and that the error on the determination of the strong coupling constant is significantly reduced.Comment: 4 pages, 3 figure

    NNLO contributions to inclusive-jet production in DIS and determination of \alpha_s

    Full text link
    We present the first calculation of inclusive jet production in deep-inelastic scattering with approximate next-to-next-to-leading order (aNNLO) contributions, obtained from a unified threshold resummation formalism. The leading coefficients are computed analytically. We show that the aNNLO contributions reduce the theoretical prediction for jet production in deep-inelastic scattering, improve the description of the final HERA data in particular at high photon virtuality Q^2 and increase the central fit value of the strong coupling constant.Comment: 5 pages, 2 figures. arXiv admin note: text overlap with arXiv:1310.172

    Large-p_T Photoproduction of D^*+- Mesons in ep Collisions

    Get PDF
    The cross section for the inclusive photoproduction of large-p_T D^*+- mesons is calculated at next-to-leading order, adopting different approaches to describe the fragmentation of charm quarks into D^*+- mesons. We treat the charm quark according to the massless factorization scheme, where it is assumed to be one of the active flavours inside the proton and the photon. We present inclusive single-particle distributions in transverse momentum and rapidity, including the contributions due to both direct and resolved photons. We compare and assess the various implementations of fragmentation. We argue that, in the high-p_T regime, a particularly realistic description can be obtained by convoluting the Altarelli-Parisi-evolved fragmentation functions of Peterson et al. with the hard-scattering cross sections of massless partons where the factorization of the collinear singularities associated with final-state charm quarks is converted to the massive-charm scheme. The predictions thus obtained agree well with recent experimental data by the H1 and ZEUS Collaborations at DESY HERA.Comment: 31 pages (Latex), 13 figures (Postscript). This version of the manuscript is identical with the one being printed in Z. Phys.

    Cross Sections for Charm Production in epep Collisions: Massive versus Massless Scheme

    Full text link
    The next--to--leading order inclusive cross section for large-p⊄p_\perp photoproduction of charm quarks at HERA is calculated in two different approaches. In the first approach the charm quarks are treated as massive objects which are strictly external to the proton and the photon while in the second approach the charm mass is neglected and the cc quark is assumed to be one of the active flavours in the proton and photon structure functions. We present single-inclusive distributions in transverse momentum and rapidity including direct and resolved photons. The cross section in the massless approach is found to be significantly larger than in the massive scheme. The deviation originates from several contributions which are disentangled. We argue that large-p⊄p_\perp photoproduction of charm quarks at HERA will be sensitive to the charm content of the photon structure function.Comment: 11 pages, Latex, epsfig, 6 figures appended as uuencoded file (hardcopy can be obtained upon request from [email protected]

    Transport through a one-dimensional quantum dot

    Full text link
    We examine the effects of long-range interactions in a quantum wire with two impurities. We employ the bosonization technique and derive an effective action for the system. The effect of the long-range interaction on the charging energy and spectral properties of the island formed by the impurities and the linear transport is discussed.Comment: 7 pages, 2 figure

    Factorization breaking in high-transverse-momentum charged-hadron production at the Tevatron?

    Full text link
    We compare the transverse momentum (p_T) distribution of inclusive light-charged-particle production measured by the CDF Collaboration at the Fermilab Tevatron with the theoretical prediction evaluated at next-to-leading order in quantum chromodynamics (QCD) using fragmentation functions recently determined through a global data fit. While, in the lower p_T range, the data agree with the prediction within the theoretical error or slightly undershoot it, they significantly exceed it in the upper p_T range, by several orders of magnitude at the largest values of p_T, where perturbation theory should be most reliable. This disagreement is too large to be remedied by introducing additional produced particles into the calculation, and potentially challenges the validity of the factorization theorem on which the parton model of QCD relies. Clearly, a breakdown of the factorization theorem, being a fundamental property of QCD, would be extremely difficult to understand.Comment: 9 pages, 5 figures; discussion extended, references added; accepted for publication in Physical Review Letter
    • 

    corecore