6 research outputs found
First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment
The WITCH experiment (Weak Interaction Trap for CHarged particles) will
search for exotic interactions by investigating the beta-neutrino angular
correlation via the measurement of the recoil energy spectrum after beta decay.
As a first step the recoil ions from the beta-minus decay of 124In stored in a
Penning trap have been detected. The evidence for the detection of recoil ions
is shown and the properties of the ion cloud that forms the radioactive source
for the experiment in the Penning trap are presented.Comment: 9 pages, 6 figures (9 figure files), submitted to European Physical
Journal
The WITCH experiment: Acquiring the first recoil ion spectrum
The standard model of the electroweak interaction describes beta-decay in the
well-known V-A form. Nevertheless, the most general Hamiltonian of a beta-decay
includes also other possible interaction types, e.g. scalar (S) and tensor (T)
contributions, which are not fully ruled out yet experimentally. The WITCH
experiment aims to study a possible admixture of these exotic interaction types
in nuclear beta-decay by a precise measurement of the shape of the recoil ion
energy spectrum. The experimental set-up couples a double Penning trap system
and a retardation spectrometer. The set-up is installed in ISOLDE/CERN and was
recently shown to be fully operational. The current status of the experiment is
presented together with the data acquired during the 2006 campaign, showing the
first recoil ion energy spectrum obtained. The data taking procedure and
corresponding data acquisition system are described in more detail. Several
further technical improvements are briefly reviewed.Comment: 11 pages, 6 figures, conference proceedings EMIS 2007
(http://emis2007.ganil.fr), published also in NIM B:
doi:10.1016/j.nimb.2008.05.15
WITCH: a recoil spectrometer for weak interaction and nuclear physics studies
An experimental set-up is described for the precise measurement of the recoil energy spectrum of the daughter ions from nuclear beta decay. The experiment is called WITCH, short for Weak Interaction Trap for CHarged particles, and is set up at the ISOLDE facility at CERN. The principle of the experiment and its realization are explained as well as the main physics goal. A cloud of radioactive ions stored in a Penning trap serves as the source for the WITCH experiment, leading to the minimization of scattering and energy loss of the decay products. The energy spectrum of the recoiling daughter ions from the --decays in this ion cloud will be measured with a retardation spectrometer. The principal aim of the WITCH experiment is to study the electroweak interaction by determining the beta--neutrino angular correlation in nuclear --decay from the shape of this recoil energy spectrum. This will be the first time that the recoil energy spectrum of the daughter ions from --decay can be measured for a wide variety of isotopes, independent of their specific properties
Magnetic moment of Ag-104(m) and the hyperfine magnetic field of Ag in Fe using nuclear magnetic resonance on oriented nuclei
Nuclear magnetic resonance (NMR/ON) measurements with beta- and gamma-ray detection have been performed on oriented Ag-104(g,m) nuclei with the NICOLE He-3-He-4 dilution refrigerator setup at ISOLDE/CERN. For Ag-104(g) (I-pi = 5(+)) the gamma-NMR/ON resonance signal was found at nu = 266.70(5) MHz. Combining this result with the known magnetic moment for this isotope, the magnetic hyperfine field of Ag impurities in an Fe host at low temperature (< 1 K) is found to be vertical bar B-hf(AgFe)vertical bar = 44.709(35) T. A detailed analysis of other relevant data available in the literature yields three more values for this hyperfine field. Averaging all four values yields a new and precise value for the hyperfine field of Ag in Fe; that is, vertical bar B-hf(AgFe)vertical bar = 44.692(30) T. For Ag-104(m) (I-pi = 2(+)), the anisotropy of the beta particles provided the NMR/ON resonance signal at nu = 627.7(4) MHz. Using the new value for the hyperfine field of Ag in Fe, this frequency corresponds to the magnetic moment mu(Ag-104m) = +3.691(3) mu(N), which is significantly more precise than previous results. The magnetic moments of the even-A Ag102 -110 isotopes are discussed in view of the competition between the (pi g(9/2))(7/2+)(-3)(nu d(5/2)nu g(7/2))(5/2+) and the (pi g(9/2))(9/2+)(-3)(nu d(5/2)nu g(7/2))(5/2+) configurations. The magnetic moments of the ground and isomeric states of Ag-104 can be explained by an almost complete mixing of these two configurations
Facility for Neutron Multiplicity Measurements in Fission.
Abstract not availableJRC.D-Institute for Reference Materials and Measurements (Geel