66 research outputs found

    Diversity of Meiofauna from the 9°50′N East Pacific Rise across a Gradient of Hydrothermal Fluid Emissions

    Get PDF
    Background: We studied the meiofauna community at deep-sea hydrothermal vents along a gradient of vent fluid emissions in the axial summit trought (AST) of the East Pacific Rise 9 degrees 50'N region. The gradient ranged from extreme high temperatures, high sulfide concentrations, and low pH at sulfide chimneys to ambient deep-sea water conditions on bare basalt. We explore meiofauna diversity and abundance, and discuss its possible underlying ecological and evolutionary processes. Methodology/Principal Findings: After sampling in five physico-chemically different habitats, the meiofauna was sorted, counted and classified. Abundances were low at all sites. A total of 52 species were identified at vent habitats. The vent community was dominated by hard substrate generalists that also lived on bare basalt at ambient deep-sea temperature in the axial summit trough (AST generalists). Some vent species were restricted to a specific vent habitat (vent specialists), but others occurred over a wide range of physico-chemical conditions (vent generalists). Additionally, 35 species were only found on cold bare basalt (basalt specialists). At vent sites, species richness and diversity clearly increased with decreasing influence of vent fluid emissions from extreme flow sulfide chimney (no fauna), high flow pompei worm (S: 4-7, H-loge': 0.11-0.45), vigorous flow tubeworm (S: 8-23; H-loge': 0.44-2.00) to low flow mussel habitats (S: 28-31; H-loge': 2.34-2.60). Conclusions/Significance: Our data suggest that with increasing temperature and toxic hydrogen sulfide concentrations and increasing amplitude of variation of these factors, fewer species are able to cope with these extreme conditions. This results in less diverse communities in more extreme habitats. The finding of many species being present at sites with and without vent fluid emissions points to a non endemic deep-sea hydrothermal vent meiofaunal community. This is in contrast to a mostly endemic macrofauna but similar to what is known for meiofauna from shallow-water vents

    Ethnic Inequalities in Mortality: The Case of Arab-Americans

    Get PDF
    BACKGROUND: Although nearly 112 million residents of the United States belong to a non-white ethnic group, the literature about differences in health indicators across ethnic groups is limited almost exclusively to Hispanics. Features of the social experience of many ethnic groups including immigration, discrimination, and acculturation may plausibly influence mortality risk. We explored life expectancy and age-adjusted mortality risk of Arab-Americans (AAs), relative to non-Arab and non-Hispanic Whites in Michigan, the state with the largest per capita population of AAs in the US. METHODOLOGY/PRINCIPAL FINDINGS: Data were collected about all deaths to AAs and non-Arab and non-Hispanic Whites in Michigan between 1990 and 2007, and year 2000 census data were collected for population denominators. We calculated life expectancy, age-adjusted all-cause, cause-specific, and age-specific mortality rates stratified by ethnicity and gender among AAs and non-Arab and non-Hispanic Whites. Among AAs, life expectancies among men and women were 2.0 and 1.4 years lower than among non-Arab and non-Hispanic White men and women, respectively. AA men had higher mortality than non-Arab and non-Hispanic White men due to infectious diseases, chronic diseases, and homicide. AA women had higher mortality than non-Arab and non-Hispanic White women due to chronic diseases. CONCLUSIONS/SIGNIFICANCE: Despite better education and higher income, AAs have higher age-adjusted mortality risk than non-Arab and non-Hispanic Whites, particularly due to chronic diseases. Features specific to AA culture may explain some of these findings

    Neighborhood-Level Racial/Ethnic Residential Segregation and Incident Cardiovascular Disease

    No full text
    • …
    corecore