26 research outputs found

    Selective vulnerability in α-synucleinopathies

    Get PDF
    Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy are neurodegenerative disorders resulting in progressive motor/cognitive deficits among other symptoms. They are characterised by stereotypical brain cell loss accompanied by the formation of proteinaceous aggregations of the protein α-synuclein (α-syn), being, therefore, termed α-synucleinopathies. Although the presence of α-syn inclusions is a common hallmark of these disorders, the exact nature of the deposited protein is specific to each disease. Different neuroanatomical regions and cellular populations manifest a differential vulnerability to the appearance of protein deposits, cell dysfunction, and cell death, leading to phenotypic diversity. The present review describes the multiple factors that contribute to the selective vulnerability in α-synucleinopathies. We explore the intrinsic cellular properties in the affected regions, including the physiological and pathophysiological roles of endogenous α-syn, the metabolic and genetic build-up of the cells and their connectivity. These factors converge with the variability of the α-syn conformational strains and their spreading capacity to dictate the phenotypic diversity and regional vulnerability of each disease. Finally, we describe the exogenous and environmental factors that potentially contribute by igniting and modulating the differential pathology in α-synucleinopathies. In conclusion, we think that it is the confluence of this disruption of the cellular metabolic state and α-syn structural equilibrium through the anatomical connectivity which appears to initiate cascades of pathological processes triggered by genetic, environmental, or stochastic events that result in the "death by a thousand cuts" profile of α-synucleinopathies

    Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: cross-sectional surveys in a population with high rates of pneumococcal disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the prevalence of carriage of respiratory bacterial pathogens, and the risk factors for and serotype distribution of pneumococcal carriage in an Australian Aboriginal population.</p> <p>Methods</p> <p>Surveys of nasopharyngeal carriage of <it>Streptococcus pneumoniae</it>, non-typeable <it>Haemophilus influenzae</it>, and <it>Moraxella catarrhalis </it>were conducted among adults (≥16 years) and children (2 to 15 years) in four rural communities in 2002 and 2004. Infant seven-valent pneumococcal conjugate vaccine (7PCV) with booster 23-valent pneumococcal polysaccharide vaccine was introduced in 2001. Standard microbiological methods were used.</p> <p>Results</p> <p>At the time of the 2002 survey, 94% of eligible children had received catch-up pneumococcal vaccination. 324 adults (538 examinations) and 218 children (350 examinations) were enrolled. Pneumococcal carriage prevalence was 26% (95% CI, 22-30) among adults and 67% (95% CI, 62-72) among children. Carriage of non-typeable <it>H. influenzae </it>among adults and children was 23% (95% CI, 19-27) and 57% (95% CI, 52-63) respectively and for <it>M. catarrhalis</it>, 17% (95% CI, 14-21) and 74% (95% CI, 69-78) respectively. Adult pneumococcal carriage was associated with increasing age (p = 0.0005 test of trend), concurrent carriage of non-typeable <it>H. influenzae </it>(Odds ratio [OR] 6.74; 95% CI, 4.06-11.2) or <it>M. catarrhalis </it>(OR 3.27; 95% CI, 1.97-5.45), male sex (OR 2.21; 95% CI, 1.31-3.73), rhinorrhoea (OR 1.66; 95% CI, 1.05-2.64), and frequent exposure to outside fires (OR 6.89; 95% CI, 1.87-25.4). Among children, pneumococcal carriage was associated with decreasing age (p < 0.0001 test of trend), and carriage of non-typeable <it>H. influenzae </it>(OR 9.34; 95% CI, 4.71-18.5) or <it>M. catarrhalis </it>(OR 2.67; 95% CI, 1.34-5.33). Excluding an outbreak of serotype 1 in children, the percentages of serotypes included in 7, 10, and 13PCV were 23%, 23%, and 29% (adults) and 22%, 24%, and 40% (2-15 years). Dominance of serotype 16F, and persistent 19F and 6B carriage three years after initiation of 7PCV is noteworthy.</p> <p>Conclusions</p> <p>Population-based carriage of <it>S. pneumoniae</it>, non-typeable <it>H. influenzae</it>, and <it>M. catarrhalis </it>was high in this Australian Aboriginal population. Reducing smoke exposure may reduce pneumococcal carriage. The indirect effects of 10 or 13PCV, above those of 7PCV, among adults in this population may be limited.</p

    Ni(2+) affects dopamine uptake which limits suitability as inhibitor of T-type voltage-gated Ca(2+) channels.

    No full text
    Neuronal T-type voltage-gated Ca(2+) channels are reported to have physiological roles that include regulation of burst firing, Ca(2+) oscillations, and neurotransmitter release. These roles are often exposed experimentally by blocking T-type channels with micromolar Ni(2+). We used Ni(2+) to explore the role of axonal T-type channels in dopamine (DA) release in mouse striatum, but identified significant off-target effects on DA uptake. Ni(2+) (100 μM) reversibly increased electrically evoked DA release and markedly extended its extracellular lifetime, detected using fast-scan cyclic voltammetry. Prior inhibition of the DA transporter (DAT) by cocaine (5 μM) occluded the facilitatory action of Ni(2+) on DA release and conversely, allowed Ni(2+) to inhibit release, presumably through T-channel inhibition. Ni(2+) further prolonged the timecourse of DA clearance suggesting further inhibition of DA uptake. In summary, Ni(2+) has major effects on DA transmission besides those due to T-channels that likely involve inhibition of the DAT

    Substance P weights striatal dopamine transmission differently within the striosome-matrix axis

    No full text
    The mammalian striatum has a topographical organization of input-output connectivity, but a complex internal, nonlaminar neuronal architecture comprising projection neurons of two types interspersed among multiple interneuron types and potential local neuromodulators. From this cellular melange arises a biochemical compartmentalization of areas termed striosomes and extrastriosomal matrix. The functions of these compartments are poorly understood but might confer distinct features to striatal signal processing and be discretely governed. Dopamine transmission occurs throughout striosomes and matrix, and is reported to be modulated by the striosomally enriched neuromodulator substance P. However, reported effects are conflicting, ranging from facilitation to inhibition. We addressed whether dopamine transmission is modulated differently in striosome-matrix compartments by substance P.We paired detection of evoked dopamine release at carbon-fiber microelectrodes in mouse striatal slices with subsequent identification of the location of recording sites with respect to μ-opioid receptor-rich striosomes. Substance P had bidirectional effects on dopamine release that varied between recording sites and were prevented by inhibition of neurokinin-1 receptors. The direction of modulation was determined by location within the striosomal-matrix axis: dopamine release was boosted in striosome centers, diminished in striosomal-matrix border regions, and unaffected in the matrix. In turn, this different weighting of dopamine transmission by substance P modified the apparent center-surround contrast of striosomal dopamine signals. These data reveal that dopamine transmission can be differentially modulated within the striosomal-matrix axis, and furthermore, indicate a functionally distinct zone at the striosome-matrix interface, which may have key impacts on striatal integration

    Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains.

    No full text
    KEY POINTS: The voltage-gated Ca(2+) channels (VGCCs) that catalyse striatal dopamine transmission are critical to dopamine function and might prime subpopulations of neurons for parkinsonian degeneration. However, the VGCCs that operate on mesostriatal axons are incompletely defined; previous studies encompassed channels on striatal cholinergic interneurons that strongly influence dopamine transmission. We define that multiple types of axonal VGCCs operate that extend beyond classic presynaptic N/P/Q channels to include T- and L-types. We reveal differences in VGCC function between mouse axon types that in humans are vulnerable versus resistant to Parkinson's disease. We show for the first time that this is underpinned by different sensitivity of dopamine transmission to extracellular Ca(2+) and by different spatiotemporal intracellular Ca(2+) microdomains. These data define key principles of how Ca(2+) and VGCCs govern dopamine transmission in the healthy brain and reveal differences between neuron types that might contribute to vulnerability in disease. ABSTRACT: The axonal voltage-gated Ca(2+) channels (VGCCs) that catalyse dopamine (DA) transmission are incompletely defined. Yet, they are critical to DA function and might prime subpopulations of DA neurons for parkinsonian degeneration. Previous studies of VGCCs will have encompassed those on striatal cholinergic interneurons, which strongly influence DA transmission. We identify which VGCCs on DA axons govern DA transmission, we determine their dynamic properties and reveal an underlying basis for differences between the caudate putamen (CPu) and nucleus accumbens (NAc). We detected DA release evoked electrically during nicotinic receptor blockade or optogenetically by light activation of channel rhodopsin-expressing DA axons in mouse striatal slices. Subtype-specific VGCC blockers indicated that N-, Q-, T- and L-VGCCs govern DA release in CPu, but in NAc, T and L-channels are relatively silent. The roles of the most dominant channels were inversely frequency-dependent, due to low-pass filtering of DA release by Ca(2+)-dependent relationships between initial release probability and short-term plasticity. Ca(2+) concentration-response curves revealed that differences between CPu and NAc were due to greater underlying Ca(2+) sensitivity of DA transmission from CPu axons. Functions for 'silent' L- and T-channels in NAc could be unmasked by elevating extracellular [Ca(2+)]. Furthermore, we identified a greater coupling between BAPTA-sensitive, fast Ca(2+) transients and DA transmission in CPu axons, and evidence for endogenous fast buffering of Ca(2+) in NAc. These data reveal that a range of VGCCs operate dynamically on DA axons, depending on local driving forces. Furthermore, they reveal dramatic differences in Ca(2+) handling between axonal subpopulations that show different vulnerability to parkinsonian degeneration

    Calbindin-D28K limits dopamine release in ventral but not dorsal striatum by regulating Ca2+ availability and dopamine transporter function

    No full text
    The calcium-binding protein calbindin-D28K, or calb1, is expressed at higher levels by dopamine (DA) neurons originating in ventral tegmental area (VTA) than in adjacent substantia nigra pars compacta (SNc). Calb1 has received attention for a potential role in neuroprotection in Parkinson’s disease. The underlying physiological roles for calb1 are incompletely understood. We used cre-loxP technology to knockdown calb1 in mouse DA neurons to test whether calb1 governs axonal release of DA in striatum, detected using fast-scan cyclic voltammetry ex vivo. In ventral but not dorsal striatum, calb1 knockdown elevated DA release and modified the spatiotemporal coupling of Ca2+ entry to DA release. Furthermore, calb1 knockdown enhanced DA uptake but attenuated the impact of DA transporter (DAT) inhibition by cocaine on underlying DA release. These data reveal that calb1 acts through a range of mechanisms underpinning both DA release and uptake to limit DA transmission in ventral but not dorsal striatum

    Selective vulnerability in α-synucleinopathies

    Get PDF
    Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy are neurodegenerative disorders resulting in progressive motor/cognitive deficits among other symptoms. They are characterised by stereotypical brain cell loss accompanied by the formation of proteinaceous aggregations of the protein α-synuclein (α-syn), being, therefore, termed α-synucleinopathies. Although the presence of α-syn inclusions is a common hallmark of these disorders, the exact nature of the deposited protein is specific to each disease. Different neuroanatomical regions and cellular populations manifest a differential vulnerability to the appearance of protein deposits, cell dysfunction, and cell death, leading to phenotypic diversity. The present review describes the multiple factors that contribute to the selective vulnerability in α-synucleinopathies. We explore the intrinsic cellular properties in the affected regions, including the physiological and pathophysiological roles of endogenous α-syn, the metabolic and genetic build-up of the cells and their connectivity. These factors converge with the variability of the α-syn conformational strains and their spreading capacity to dictate the phenotypic diversity and regional vulnerability of each disease. Finally, we describe the exogenous and environmental factors that potentially contribute by igniting and modulating the differential pathology in α-synucleinopathies. In conclusion, we think that it is the confluence of this disruption of the cellular metabolic state and α-syn structural equilibrium through the anatomical connectivity which appears to initiate cascades of pathological processes triggered by genetic, environmental, or stochastic events that result in the "death by a thousand cuts" profile of α-synucleinopathies

    Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice.

    No full text
    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice
    corecore