30 research outputs found

    Structural Ordering of Disordered Ligand-Binding Loops of Biotin Protein Ligase into Active Conformations as a Consequence of Dehydration

    Get PDF
    Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of ∼3.5 Å in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action

    Identification of a Bacteria-produced Benzisoxazole with Antibiotic Activity against Multi-drug Resistant Acinetobacter baumannii

    Get PDF
    The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 μg ml−1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole’s antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole

    Ethanol-Mediated Regulation of Cytochrome P450 2A6 Expression in Monocytes: Role of Oxidative Stress-Mediated PKC/MEK/Nrf2 Pathway

    Get PDF
    Cytochrome P450 2A6 (CYP2A6) is known to metabolize nicotine, the major constituent of tobacco, leading to the production of toxic metabolites and induction of oxidative stress that result in liver damage and lung cancer. Recently, we have shown that CYP2A6 is induced by ethanol and metabolizes nicotine into cotinine and other metabolites leading to generation of reactive oxygen species (ROS) in U937 monocytes. However, the mechanism by which CYP2A6 is induced by ethanol is unknown. In this study, we have examined the role of the PKC/Nrf2 pathway (protein kinase C-mediated phosphorylation and translocation of nuclear erythroid 2-related factor 2 to the nucleus) in ethanol-mediated CYP2A6 induction. Our results showed that 100 mM ethanol significantly induced CYP2A6 mRNA and protein (∼150%) and increased ROS formation, and induction of gene expression and ROS were both completely blocked by treatment with either a CYP2E1 inhibitor (diallyl sulfide) or an antioxidant (vitamin C). The results suggest the role of oxidative stress in the regulation of CYP2A6 expression. Subsequently, we investigated the role of Nrf2 pathway in oxidative stress-mediated regulation of CYP2A6 expression in U937 monocytes. Our results showed that butylated hydroxyanisole, a stabilizer of nuclear Nrf2, increased CYP2A6 levels >200%. Staurosporine, an inhibitor of PKC, completely abolished ethanol-induced CYP2A6 expression. Furthermore, our results showed that a specific inhibitor of mitogen-activated protein kinase kinase (MEK) (U0126) completely abolished ethanol-mediated CYP2A6 induction and Nrf2 translocation. Overall, these results suggest that CYP2E1-mediated oxidative stress produced as a result of ethanol metabolism translocates Nrf2 into the nucleus through PKC/MEK pathway, resulting in the induction of CYP2A6 in monocytes. An increased level of CYP2A6 in monocytes is expected to further increase oxidative stress in smokers through CYP2A6-mediated nicotine metabolism. Thus, this study has clinical relevance because of the high incidence of alcohol use among smokers, especially in HIV-infected individuals

    Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC), including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19).</p> <p>Methods</p> <p>Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS)</p> <p>Results</p> <p>HNTMB displayed high cytotoxicity (IC50 200-400 nM) compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTh2H/315, HNI/311; IC50 0.8-6 μM) or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 μM). In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 μM). In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS) while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels.</p> <p>Conclusions</p> <p>The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other solid tumors.</p

    Device degradation of n-channel poly-Si TFTs due to high-field, hot-carrier and radiation stressing

    No full text
    There has been increasing interest in polysilicon thin film transistors (TFTs) for high-performance applications, particularly in high-resolution displays. For these applications, the primary requirement is that the TFTs have a low threshold voltage, low and stable leakage current and reasonably high carrier mobility. The poly-Si TFTs typically have sufficiently large mobilities to be used for high-drive and moderately high-frequency applications. However, since low temperatures are used in poly-Si TFT fabrication, both semiconducting and insulating layers are of poorer quality than those used in crystalline-Si technology. Consequently, long term TFT stability is an important issue. A considerable amount of research has focused on the stability of poly-Si TFTs. The instabilities are basically associated with hot carrier injection and degradation, negative gate bias instability and gate-induced carrier injection and trapping (Young, 1996). This leads to degradation of several device parameters such as threshold voltage, mobility, transconductance, and subthreshold slope. The work presented here is a comprehensive study of degradation in low temperature (&les;600°C) poly-Si TFTs due to high-field, hot-carrier and ionizing radiation stressing. This unified approach makes it possible to identify the key reasons for degradation. Furthermore, a systematic study of the dependence on device geometry, as reported here, also helps understanding of the degradation mechanisms.© IEE
    corecore