32 research outputs found

    Fonofos Exposure and Cancer Incidence in the Agricultural Health Study

    Get PDF
    BACKGROUND: The Agricultural Health Study (AHS) is a prospective cohort study of licensed pesticide applicators from Iowa and North Carolina enrolled 1993–1997 and followed for incident cancer through 2002. A previous investigation in this cohort linked exposure to the organophosphate fonofos with incident prostate cancer in subjects with family history of prostate cancer. OBJECTIVES: This finding along with findings of associations between organophosphate pesticides and cancer more broadly led to this study of fonofos and risk of any cancers among 45,372 pesticide applicators enrolled in the AHS. METHODS: Pesticide exposure and other data were collected using self-administered questionnaires. Poisson regression was used to calculate rate ratios (RRs) and 95% confidence intervals (CIs) while controlling for potential confounders. RESULTS: Relative to the unexposed, leukemia risk was elevated in the highest category of lifetime (RR = 2.24; 95% CI, 0.94–5.34, p(trend) = 0.07) and intensity-weighted exposure-days (RR = 2.67; 95% CI, 1.06–6.70, p(trend) = 0.04), a measure that takes into account factors that modify pesticide exposure. Although prostate cancer risk was unrelated to fonofos use overall, among applicators with a family history of prostate cancer, we observed a significant dose–response trend for lifetime exposure-days (p(trend) = 0.02, RR highest tertile vs. unexposed = 1.77, 95% CI, 1.03–3.05; RR(interaction) = 1.28, 95% CI, 1.07–1.54). Intensity-weighted results were similar. No associations were observed with other examined cancer sites. CONCLUSIONS: Further study is warranted to confirm findings with respect to leukemia and determine whether genetic susceptibility modifies prostate cancer risk from pesticide exposure

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Instrumentation and testing methodology for detecting chloride contaminants in soils

    No full text
    Contamination of subsurface soil attributable to indiscriminate land disposal of various industrial wastes is becoming a challenging problem. To counter this, engineered containment and barrier systems are used. However, to evaluate the performance of these systems, continuous monitoring to detect the presence of contaminants is essential. This necessitates development of a contaminant detector that would be useful for detecting contaminants in the soil mass in their Cl- form. With this in view, a soil contaminant detector has been developed and its testing methodology is presented in this paper. The measurements from the detector are compared with those of the argentomettic method. An excellent agreement between the two results indicates efficient functioning of the soil contaminant detector

    A simple apparatus for the measurement of thermoelectric power in the temperature range 4·2–300K

    No full text
    A simple apparatus to measure the absolute thermoelectric power of solids in the temperature range 4·2–300K is described. The cryostat and the associated instrumentation is simple to operate. Representative data of measurements on metallic wire and pressed pellets are given. An accuracy of better than 10% in absolute thermopower can be obtained in this apparatus

    An automated thermal relaxation calorimeter for operation at low temperature (0.5 K<T<10 K)

    Get PDF
    We describe an automated calorimeter for measurement of specific heat in the temperature range 10 K>T>0.5 K. It uses sample of moderate size (100–1000 mg), has a moderate precision and accuracy (2%–5%), is easy to operate and the measurements can be done quickly with He4 economy. The accuracy of this calorimeter was checked by measurement of specific heat of copper and that of aluminium near its superconducting transition temperature

    Normal state tunneling conductance of perovskite oxides: Implications for high-Tc superconductors

    No full text
    We have investigated tunneling conductances in disordered, normally conducting perovskite oxides close to the metal�insulator transition. We show that the normal state tunneling conductance of perovskite oxides can be cast in a general form G(V) = G0[1 + curly logical orV/V*curly logical orn] with 1?n?0.5 and where V* is an intrinsic energy scale. The exponent n graduall y increases from 0.5 to 1 as the metal-insulator (M-I) transition is approached. In the high-Tc Bi(2212) cuprates, the normally observed, linear G(V)(n=1) can be made sub-linear (n<1) by substitution of Ca with Y. From the similarity of the linear conductances, we suggest proximity to the M-I transition as a likely cause for this G(V)logical or, bar below V dependence. In systems showing linear conductances (nreverse similar, equals1), we find that ?G/?Vreverse similar, equalsG?0 with ?reverse similar, equals 1 and the intrinsic energy scale V*reverse similar, equals25�75 meV in the different oxides investigated

    Metal-insulator transition in perovskite oxides: Tunneling experiments

    No full text
    In this paper we have investigated the composition-driven metal-insulator (MI) transitions in two ABO3 classes of perovskite oxides (LaNixCo1-xO3 and NaxTayW1-yO3) in the composition range close to the critical region by using the tunneling technique. Two types of junctions (point-contact and planar) have been used for the investigation covering the temperature range 0.4 K<T<4.2 K. We find that in both classes of materials the junction conductance G(V) [=dI/dV] decreases near the zero-bias region as the MI transition is approached. However, there is a fairly strong thermal-smearing effect near the zero-bias region for ?V?<10kBT/e. $G(V)� has been found to follow a power law of the type G(V)=G0(1+{?V?/V*}n) with V*=const and with n=0.5 for samples in the weak-localization region. However, as the critical region of the MI transition is approached G0?0 and n?1. We also find that for samples lying in the weak-localization region ?=eV* has a well-defined dependence on ?0, the zero-temperature conductivity. The observed behavior can be explained either as a manifestation of depletion of density of states at the Fermi level as the MI transition is approached or as a manifestation of strong inelastic scattering in the junction region

    Superconductivity in Ba1ySryPb1xBixO3Ba_{1-y}Sr_yPb_{1-x}Bi_xO_3

    No full text
    Substitution of BaBa by SrSr in BaPb1xBixO3BaPb_{1-x}Bi_xO_3 narrows the superconducting composition range in addition to lowering the TcT_c; the decrease in TcT_c with SrSr content is nonlinear. The effect of SrSr substitution is found to be more subtle than a mere chemical pressure effect

    Determination of magnetic domain state of carbon coated iron nanoparticles via Fe-57 zero-external-field NMR

    No full text
    The magnetic domain state of carbon coated iron nanopowder (Fe@C) was studied by the internal field nuclear magnetic resonance (IFNMR) at 77 K using the spin echo technique. The structure and magnetic properties of the sample were further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Mossbauer spectroscopy, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA) and Raman Spectroscopy. The obtained IFNMR results of Fe@C powder were compared with that of micron sized carbonyl iron (CI) and electrolytic iron (EI) powders. The calculated critical size of the single domain iron particles in Fe@C is similar to 16 nm. A higher enhancement in echo amplitude was observed due to better response of the domain walls of multidomain particles in comparison to the single domain particles. The echo signal of CI and EI particles exhibit a single narrow intense peak corresponding to the domain walls, whereas Fe@C exhibits two low amplitude peaks at two different frequencies: a low frequency (46.6 MHz) peak corresponds to the response of the domain walls of the multidomain particles and the other high frequency (47.2 MHz) signal (a shoulder) corresponding to the response of the magnetic nuclei inside the domain. Our results help in determining the domain state of iron-based magnetic particles using Fe-57-IFNMR. (C) 2018 Elsevier B.V. All rights reserved
    corecore