1,243 research outputs found
Abscisic acid transporters cooperate to control seed germination
Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues.1141Ysciescopu
Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017
We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics.published_or_final_versio
Use of antagonist muscle EMG in the assessment of neuromuscular health of the low back
Background: Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities. Methods: Twenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion. Results: Mean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly (P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion. Conclusions: Results of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study.open0
Widespread sex differences in gene expression and splicing in the adult human brain
There is strong evidence to show that men and women differ in terms of neurodevelopment, neurochemistry and susceptibility to neurodegenerative and neuropsychiatric disease. The molecular basis of these differences remains unclear. Progress in this field has been hampered by the lack of genome-wide information on sex differences in gene expression and in particular splicing in the human brain. Here we address this issue by using post-mortem adult human brain and spinal cord samples originating from 137 neuropathologically confirmed control individuals to study whole-genome gene expression and splicing in 12 CNS regions. We show that sex differences in gene expression and splicing are widespread in adult human brain, being detectable in all major brain regions and involving 2.5% of all expressed genes. We give examples of genes where sex-biased expression is both disease-relevant and likely to have functional consequences, and provide evidence suggesting that sex biases in expression may reflect sex-biased gene regulatory structures
Estimating Dynamic Gait Stability Using Data from Non-aligned Inertial Sensors
Recently, two methods for quantifying the stability of a dynamical system have been applied to human locomotion: local stability (quantified by finite time maximum Lyapunov exponents, λs and λL) and orbital stability (quantified by maximum Floquet multipliers, MaxFm). In most studies published to date, data from optoelectronic measurement systems were used to calculate these measures. However, using wireless inertial sensors may be more practical as they are easier to use, also in ambulatory applications. While inertial sensors have been employed in some studies, it is unknown whether they lead to similar stability estimates as obtained with optoelectronic measurement systems. In the present study, we compared stability measures of human walking estimated from an optoelectronic measurement system with those calculated from an inertial sensor measurement system. Subjects walked on a treadmill at three different speeds while kinematics were recorded using both measurement systems. From the angular velocities and linear accelerations, λs, λL, and MaxFm were calculated. Both measurement systems showed the same effects of walking speed for all variables. Estimates from both measurement systems correlated high for λs and λL, (R > 0.85) but less strongly for MaxFm (R = 0.66). These results indicate that inertial sensors constitute a valid alternative for an optoelectronic measurement system when assessing dynamic stability in human locomotion, and may thus be used instead, which paves the way to studying gait stability during natural, everyday walking
Plasticity and dystonia: a hypothesis shrouded in variability.
Studying plasticity mechanisms with Professor John Rothwell was a shared highlight of our careers. In this article, we discuss non-invasive brain stimulation techniques which aim to induce and quantify plasticity, the mechanisms and nature of their inherent variability and use such observations to review the idea that excessive and abnormal plasticity is a pathophysiological substrate of dystonia. We have tried to define the tone of our review by a couple of Professor John Rothwell's many inspiring characteristics; his endless curiosity to refine knowledge and disease models by scientific exploration and his wise yet humble readiness to revise scientific doctrines when the evidence is supportive. We conclude that high variability of response to non-invasive brain stimulation plasticity protocols significantly clouds the interpretation of historical findings in dystonia research. There is an opportunity to wipe the slate clean of assumptions and armed with an informative literature in health, re-evaluate whether excessive plasticity has a causal role in the pathophysiology of dystonia
Sensitivity of Local Dynamic Stability of Over-Ground Walking to Balance Impairment Due to Galvanic Vestibular Stimulation
Impaired balance control during gait can be detected by local dynamic stability measures. For clinical applications, the use of a treadmill may be limiting. Therefore, the aim of this study was to test sensitivity of these stability measures collected during short episodes of over-ground walking by comparing normal to impaired balance control. Galvanic vestibular stimulation (GVS) was used to impair balance control in 12 healthy adults, while walking up and down a 10 m hallway. Trunk kinematics, collected by an inertial sensor, were divided into episodes of one stroll along the hallway. Local dynamic stability was quantified using short-term Lyapunov exponents (λs), and subjected to a bootstrap analysis to determine the effects of number of episodes analysed on precision and sensitivity of the measure. λs increased from 0.50 ± 0.06 to 0.56 ± 0.08 (p = 0.0045) when walking with GVS. With increasing number of episodes, coefficients of variation decreased from 10 ± 1.3% to 5 ± 0.7% and the number of p values >0.05 from 42 to 3.5%, indicating that both precision of estimates of λs and sensitivity to the effect of GVS increased. λs calculated over multiple episodes of over-ground walking appears to be a suitable measure to calculate local dynamic stability on group level
Accurate thermal conductivities from optimally short molecular dynamics simulations
The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to compute these coefficients from optimally short molecular dynamics simulations, based on the Green-Kubo theory of linear response and the cepstral analysis of time series. Information from the full sample power spectrum of the relevant current for a single and relatively short trajectory is leveraged to evaluate and optimally reduce the noise affecting its zero-frequency value, whose expectation is proportional to the corresponding conductivity. Our method is unbiased and consistent, in that both the resulting bias and statistical error can be made arbitrarily small in the long-time limit. A simple data-analysis protocol is proposed and validated with the calculation of thermal conductivities in the paradigmatic cases of elemental and molecular fluids (liquid Ar and H2O) and of crystalline and glassy solids (MgO and a-SiO2). We find that simulation times of one to a few hundred picoseconds are sufficient in these systems to achieve an accuracy of the order of 10% on the estimated thermal conductivities
- …