6 research outputs found

    The dimensions of prosociality: a cross-cultural lexical analysis

    Get PDF
    The West is usually portrayed as relatively individualistic. It is further argued that this tendency has influenced academia, leading to an underappreciation of the importance of prosociality. In the interest of exploring this topic, an enquiry was conducted into conceptualisations of prosociality across the world’s cultures. This enquiry focused on so-called untranslatable words, i.e., which lack an exact translation into another language (in this case, English). Through a quasi-systematic search of academic and grey literature, together with additional data collection, over 200 relevant terms were located. An adapted form of grounded theory identified five dimensions: socialising/congregating; morals/ethics; compassion/kindness; interaction/communication; and communality. The analysis sheds light on the dynamics of prosociality, as understood by cultures across the globe. Moreover, the roster of terms featured have the potential to enrich the nomological network in psychology, allowing for a richer conceptualisation of the social dimensions of human functioning

    Sex- and age-specific associations between cardiometabolic risk and white matter brain age in the UK Biobank cohort

    No full text
    Cardiometabolic risk factors (CMRs) are associated with accelerated brain aging and increased risk for sex-dimorphic illnesses such as Alzheimer’s Disease (AD). Yet, it is unknown how CMRs interact with sex and apolipoprotein E-✏4 (APOE4), a known genetic risk factor for AD, to influence brain age across different life stages. Using age prediction based on multi-shell diffusion-weighted imaging data in 21,308 UK Biobank participants, we investigated whether associations between white matter Brain Age Gap (BAG) and body mass index (BMI), waist-to-hip ratio (WHR), body fat percentage (BF%), and APOE4 sta- tus varied i) between males and females, ii) according to age at menopause in females, and iii) across different age groups in males and females. We report sex differences in associa- tions between BAG and all three CMRs, with stronger positive associations among males compared to females. Independent of APOE4 status, higher BAG (older brain age relative to chronological age) was associated with greater BMI, WHR, and BF% in males, whereas in females, higher BAG was associated with greater WHR, but not BMI and BF%. These divergent associations were most prominent within the oldest group of females (66-81yrs), where greater BF% was linked to lower BAG. Earlier menopause transition was associated with higher BAG, but no interactions were found with CMRs. In conclusion, the findings point to sex- and age-specific associations between CMRs and brain age. Incorporating sex as a factor of interest in studies addressing cardiometabolic risk may promote sex-specific precision medicine, consequently improving health care for both males and females

    Sex- and age-specific associations between cardiometabolic risk and white matter brain age in the UK Biobank cohort

    Get PDF
    Cardiometabolic risk factors (CMRs) are associated with accelerated brain aging and increased risk for sex-dimorphic illnesses such as Alzheimer’s Disease (AD). Yet, it is unknown how CMRs interact with sex and apolipoprotein E-ε4 (APOE4), a known genetic risk factor for AD, to influence brain age across different life stages. Using age prediction based on multi-shell diffusion-weighted imaging data in 21,308 UK Biobank participants, we investigated whether associations between white matter Brain Age Gap (BAG) and body mass index (BMI), waist-to-hip ratio (WHR), body fat percentage (BF%), and APOE4 status varied i) between males and females, ii) according to age at menopause in females, and iii) across different age groups in males and females. We report sex differences in associations between BAG and all three CMRs, with stronger positive associations among males com- pared to females. Higher BAG (older brain age relative to chronological age) was associated with greater BMI, WHR, and BF% in males, whereas in females, higher BAG was associated with greater WHR, but not BMI and BF%. These divergent associations were most prominent within the oldest group of females (66-81yrs), where higher BF% was linked to lower BAG (younger brain age relative to chronological age). Earlier menopause transition was associated with higher BAG, but no interactions were found with CMRs. APOE4 status was not significantly associated with BAG, and no significant interactions with CMRs were found. In conclusion, the findings point to sex- and age-specific associations between body fat composition and brain age. Incorporating sex as a factor of interest in studies addressing cardiometabolic risk may promote sex-specific precision medicine, consequently improving health care for both males and females

    Associations between abdominal adipose tissue, reproductive span, and brain characteristics in post-menopausal women

    Get PDF
    The menopause transition involves changes in oestrogens and adipose tissue distribution, which may influence female brain health post-menopause. Although increased central fat accumulation is linked to risk of cardiometabolic diseases, adipose tissue also serves as the primary biosynthesis site of oestrogens post-menopause. It is unclear whether different types of adipose tissue play diverging roles in female brain health post-menopause, and whether this depends on lifetime oestrogen exposure, which can have lasting effects on the brain and body even after menopause. Using the UK Biobank sample, we investigated associations between brain characteristics and visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (ASAT) in 10,251 post-menopausal females, and assessed whether the relationships varied depending on length of reproductive span (age at menarche to age at menopause). To parse the effects of common genetic variation, we computed polygenic scores for reproductive span. The results showed that higher VAT and ASAT were both associated with higher grey and white matter brain age, and greater white matter hyperintensity load. The associations varied positively with reproductive span, indicating more prominent associations between adipose tissue and brain measures in females with a longer reproductive span. The effects were in general small, but could not be fully explained by genetic variation or relevant confounders. Our findings indicate that associations between abdominal adipose tissue and brain health post-menopause may partly depend on individual differences in cumulative oestrogen exposure during reproductive years, emphasising the complexity of neural and endocrine ageing processes in females
    corecore