35 research outputs found

    Impact of Food Matrices on Digestibility of Allergens and Poorly Allergenic Homologs

    No full text
    BACKGROUND: Protease resistance is considered a risk factor for allergenicity of proteins, although the correlation is low. It is nonetheless a part of the weight-of-evidence approach, proposed by Codex, for assessing the allergenicity risk of novel food proteins. Susceptibility of proteins to pepsin is commonly tested with purified protein in solution. OBJECTIVE: Food proteins are rarely consumed in purified form. Our aim was to evaluate the impact of experimental and endogenous food matrices on protease susceptibility of homologous protein pairs with different degrees of allergenicity. METHODS: Porcine and shrimp tropomyosin (ST) were subjected to sequential exposure to amylase, pepsin, and pancreatin in their respective endogenous matrix (pork tenderloin/boiled shrimp) and in three different experimental matrices (dessert mousse [DM], soy milk [SM], and chocolate bar [CB]). Digestion was monitored by immunoblotting using tropomyosin-specific antibodies. Recombinant peach and strawberry lipid transfer protein were biotinylated, spiked into both peach and strawberry fruit pulp, and subjected to the same sequential digestion protocol. Digestion was monitored by immunoblotting using streptavidin for detection. RESULTS: Chocolate bar, and to a lesser extent SM, had a clear protective effect against pepsin digestion of porcine tropomyosin (PT) and to a lesser extent of ST. Increased resistance was associated with increased protein content. Spiking experiments with bovine serum albumin (BSA) confirmed the protective effect of a protein-rich matrix. The two tropomyosins were both highly resistant to pepsin in their protein-rich and lean native food matrix. Pancreatin digestion remained rapid and complete, independent of the matrix. The fat-rich environment did not transfer protection against pepsin digestion. Spiking of recombinant peach and strawberry lipid transfer proteins into peach and strawberry pulp did not reveal any differential protective effect that could explain differences in allergenicity of both fruits. CONCLUSIONS: Protein-rich food matrices delay pepsin digestion by saturating the protease. This effect is most apparent for proteins that are highly pepsin susceptible in solution. The inclusion of food matrices does not help in understanding why some proteins are strong primary sensitizers while homologs are very poor allergens. Although for induction of symptoms in food allergic patients (elicitation), a protein-rich food matrix that may contribute to increased risk, our results indicate that the inclusion of food matrices in the weight-of-evidence approach for estimating the potential risks of novel proteins to become allergens (sensitization), is most likely of very limited value

    Simulating Deep Oil Spills Beyond the Gulf of Mexico

    No full text
    As deep-sea oil exploitation increases worldwide, the probability of another Deepwater Horizon (DWH) blowout also increases. The DWH disaster directly impacted the coastal communities of the Gulf of Mexico (GoM) with 11 deaths and the release of 172.2 million gallons of gas-saturated oil, covering over 1000 miles of coastline and contaminating an estimated 300,000 million cubic meters of GoM water. In the aftermath of the DWH blowout, the question of what a similar event would look like outside the GoM is of fundamental importance. Anticipating the extent and potential environmental impact of major spills in other locations becomes important for effective oil preparedness and response, including coordination of emergency response between neighboring countries. Avoiding deep-sea drilling in environmentally sensitive and some of the world’s most biodiverse and productive fishing areas is also of upmost importance. The west coasts of Cuba and West Africa may be two of the most environmentally sensitive areas across the North Atlantic, yet exploitation of deepwater oil reservoirs has already started or is imminent. Northwest Cuba holds abundant coral reefs characterized by uniquely high diversity and fish biomass, and the region is also home of multi-species spawning aggregations, crucial for the persistence of fish populations. In addition, this area contains Cuba’s most important lobster fishery grounds. A major oil spill occurring in NW Cuba is thus likely to have deleterious impacts on the biodiversity and seafood resources of the region. The West African coastal upwelling system is an extremely productive area, harboring one of the world’s main “hot spots” in terms of fish abundance and biomass. This important system is most likely also a crucial mechanism regulating the climate, and an oil spill in this area could thus have severe local and global impacts. Here we simulate a DWH-like spill in two deepwater prospect blocks offshore Cuba and Senegal, West Africa, and evaluate their extent and impact against the DHW oil spill hindcast as a benchmark. These two hypothetical spills are not locally contained and are both severe, yet we find distinctive differences between their impact on the coastline, the seafloor, and the water column. Overall, the Senegal deep blowout scenario seems to be the most impactful with the highest sedimented and beached oil mass; the Cuba deep blowout scenario is the second worst, with the highest impact in terms of oiled area and volume. In this context, our study demonstrates that if another DWH occurred in a different region, poorly regulated emergency responses for international waters at the time of the spill could result in more detrimental impacts on marine ecosystems and coastal communities compared to the DWH. Here, we bring forward, quantify, and visualize the possible outcomes of another mega-spill similar to the DWH in two strategic locations to increase the awareness of decision-makers and the public to such implications. Since oil exploration is not expected to decrease in the near future, we urge governments to focus on establishing international agreements protecting sensitive marine resources and areas
    corecore