665 research outputs found
Mismorphism: a Semiotic Model of Computer Security Circumvention (Extended Version)
In real world domains, from healthcare to power to finance, we deploy computer systems intended to streamline and improve the activities of human agents in the corresponding non-cyber worlds. However, talking to actual users (instead of just computer security experts) reveals endemic circumvention of the computer-embedded rules. Good-intentioned users, trying to get their jobs done, systematically work around security and other controls embedded in their IT systems. This paper reports on our work compiling a large corpus of such incidents and developing a model based on semiotic triads to examine security circumvention. This model suggests that mismorphisms---mappings that fail to preserve structure---lie at the heart of circumvention scenarios; differential perceptions and needs explain users\u27 actions. We support this claim with empirical data from the corpus
Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.
Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis
Cannabinoid CB2 Receptors in a Mouse Model of A beta Amyloidosis: Immunohistochemical Analysis and Suitability as a PET Biomarker of Neuroinflammation
In Alzheimer\u27s disease (AD), one of the early responses to A beta amyloidosis is recruitment of microglia to areas of new plaque. Microglial receptors such as cannabinoid receptor 2 (CB2) might be a suitable target for development of PET radiotracers that could serve as imaging biomarkers of A beta-induced neuroinflammation. Mouse models of amyloidosis (J20APPswe/ind and APPswe/PS1 Delta E9) were used to investigate the cellular distribution of CB2 receptors. Specificity of CB2 antibody (H60) was confirmed using J20APPswe/ind mice lacking CB2 receptors. APPswe/PS1 Delta E9 mice were used in small animal PET with a CB2-targeting radiotracer, [C-11]A836339. These studies revealed increased binding of [C-11]A836339 in amyloid-bearing mice. Specificity of the PET signal was confirmed in a blockade study with a specific CB2 antagonist, AM630. Confocal microscopy revealed that CB2-receptor immunoreactivity was associated with astroglial (GFAP) and, predominantly, microglial (CD68) markers. CB2 receptors were observed, in particular, in microglial processes forming engulfment synapses with A beta plaques. In contrast to glial cells, neuron (NeuN)-derived CB2 signal was equal between amyloid-bearing and control mice. The pattern of neuronal CB2 staining in amyloid-bearing mice was similar to that in human cases of AD. The data collected in this study indicate that A beta amyloidosis without concomitant tau pathology is sufficient to activate CB2 receptors that are suitable as an imaging biomarker of neuroinflammation. The main source of enhanced CB2 PET binding in amyloid-bearing mice is increased CB2 immunoreactivity in activated microglia. The presence of CB2 immunoreactivity in neurons does not likely contribute to the enhanced CB2 PET signal in amyloid-bearing mice due to a lack of significant neuronal loss in this model. However, significant loss of neurons as seen at late stages of AD might decrease the CB2 PET signal due to loss of neuronally-derived CB2. Thus this study in mouse models of AD indicates that a CB2-specific radiotracer can be used as a biomarker of neuroinflammation in the early preclinical stages of AD, when no significant neuronal loss has yet developed
Subatmospheric pressure in a water draining pipeline with an air pocket
[EN] An air pocket's behaviour inside of a pipeline during transient conditions is of great importance due to its effect on the safety of the hydraulic system and the complexity of modeling its behaviour. The emptying process from water pipelines needs more assessment because the generation of troughs of subatmospheric pressure may lead to serious damage. This research studies the air pocket parameters during an emptying process from a water pipeline. A well-equipped experimental facility was used to measure the pressure and the velocity change throughout the water emptying for different air pocket sizes and valve opening times. The phenomenon was simulated using a one-dimensional (1D) developed model based on the rigid formulation with a non-variable friction factor and a constant pipe diameter. The mathematical model shows good ability in predicting the trough of subatmospheric pressure value as the most important parameter which can affect the safety of hydraulic systems.This work was supported by the Fundacion CEIBA - Gobernacion de Bolivar, Colombia which covered the financial support for the doctoral student, Oscar E. Coronado-Hernandez.Coronado-Hernández, OE.; Fuertes-Miquel, VS.; Besharat, M.; Ramos, HM. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal. 15(4):1-7. https://doi.org/10.1080/1573062X.2018.1475578S1715
Celestial Mechanics, Conformal Structures, and Gravitational Waves
The equations of motion for non-relativistic particles attracting
according to Newton's law are shown to correspond to the equations for null
geodesics in a -dimensional Lorentzian, Ricci-flat, spacetime with a
covariantly constant null vector. Such a spacetime admits a Bargmann structure
and corresponds physically to a generalized pp-wave. Bargmann electromagnetism
in five dimensions comprises the two Galilean electro-magnetic theories (Le
Bellac and L\'evy-Leblond). At the quantum level, the -body Schr\"odinger
equation retains the form of a massless wave equation. We exploit the conformal
symmetries of such spacetimes to discuss some properties of the Newtonian
-body problem: homographic solutions, the virial theorem, Kepler's third
law, the Lagrange-Laplace-Runge-Lenz vector arising from three conformal
Killing 2-tensors, and motions under inverse square law forces with a
gravitational constant varying inversely as time (Dirac). The latter
problem is reduced to one with time independent forces for a rescaled position
vector and a new time variable; this transformation (Vinti and Lynden-Bell)
arises from a conformal transformation preserving the Ricci-flatness
(Brinkmann). A Ricci-flat metric representing non-relativistic
gravitational dyons is also pointed out. Our results for general time-dependent
are applicable to the motion of point particles in an expanding
universe. Finally we extend these results to the quantum regime.Comment: 26 pages, LaTe
Small Angle Scattering and Zeta Potential of Liposomes Loaded with Octa(carboranyl)porphyrazine
In this work the physicochemical characterization of liposomes loaded with a
newly synthesised carboranyl porphyrazine (H2HECASPz) is described. This
molecule represents a potential drug for different anticancer therapies, such
as Boron Neutron Capture Therapy, Photodynamic Therapy and Photothermal
Therapy. Different loading methods and different lipid mixtures were tested.
The corresponding loaded vectors were studied by Small Angle Scattering (SANS
and SAXS), light scattering and zeta potential. The combined analysis of
structural data at various length scales and the measurement of the surface
charge allowed to obtain a detailed characterization of the investigated
systems. The mechanisms underlying the onset of differences in relevant
physicochemical parameters (size, polydispersity and charge) were also
critically discussed
Spatial and temporal variation in long-term sediment accumulation in a back-barrier salt marsh
In situ persistence of salt marshes in the face of sea-level rise relies on their ability to maintain substrate elevation through sufficient vertical accretion of sediment. However, sedimentation rates in salt marshes vary spatially and temporally, which complicates the assessment of their ability to keep up with sea-level rise. Here, we explore the spatial and temporal variation in sediment accumulation in a single back-barrier salt marsh site. Using one-time in situ measurements at the landscape scale, we obtained synoptic information of elevation and sediment thickness over the entire salt marsh in a chronosequence over centuries. Repeated measurements along short elevation transects (0.3–0.9 m +MHT) revealed decadal changes, complementing the broader marsh data with detailed information on elevation, thickness of the marsh deposits and accumulation rates. Thickness of the deposits was largely related to the elevation gradient: the sediment layer was thinner at the higher marsh (near the dunes and far away from the intertidal flats), and thicker at the lower marsh (near the intertidal flats). Moreover, the thickness of the layer increased with salt marsh age along the chronosequence, and age accounted for 72 % of variability in sediment accumulation. The rate of sediment accumulation was higher than the local rate of sea-level rise in the younger marsh, whereas it was equal to the rate of sea-level rise in the older marsh. In the older salt marsh, sediment accumulation was lower, possibly due to autocompaction in the thicker, older layers. Both at the landscape scale and along short elevation transects within individual drainage basins, sediment accumulation decreased with distance to sediment supply routes. However, their relative importance depended on the scale of observation. Distance to creeks accounted for 17 % of the variability in sediment accumulation at the landscape scale, compared to 4 % at the smaller scale. Similarly, the influence of distance to intertidal flats varied from 1 % at the landscape scale to 13 % at the smaller scale. Our main findings indicate that lower-elevation older marshes and higher-elevation younger marshes far away from sediment sources are at risk of not keeping pace with the local rate of sea-level rise and are potentially vulnerable to increased flooding
Spatial Pattern Enhances Ecosystem Functioning in an African Savanna
Termites indirectly enhance plant and animal productivity near their mounds, and the uniform spatial patterning of these mounds enhances the overall productivity of the entire landscape
Pore wall corrugation effect on the dynamics of adsorbed H 2 studied by in situ quasi elastic neutron scattering Observation of two timescaled diffusion
The self diffusion mechanisms for adsorbed H2 in different porous structures are investigated with in situ quasi elastic neutron scattering method at a temperature range from 50 K to 100 K and at various H2 loadings. The porous structures of the carbon materials have been characterized by sorption analysis with four different gases and the results are correlated with previous in depth analysis with small angle neutron scattering method. Thus, an investigation discussing the effect of pore shape and size on the nature of adsorbed H2 self diffusion is performed. It is shown that H2 adsorbed in nanometer scale pores is self diffusing in two distinguishable timescales. The effect of the pore, pore wall shape and corrugation on the fraction of confined and more mobile H2 is determined and analyzed. The increased corrugation of the pore walls is shown to have a stronger confining effect on the H2 motions. The difference of self diffusional properties of the two H2 components are shown to be smaller when adsorbed in smoother walled pores. This is attributed to the pore wall corrugation effect on the homogeneity of formed adsorbed layer
- …