7,453 research outputs found

    Large Magnetic Susceptibility Anisotropy of Metallic Carbon Nanotubes

    Full text link
    Through magnetic linear dichroism spectroscopy, the magnetic susceptibility anisotropy of metallic single-walled carbon nanotubes has been extracted and found to be 2-4 times greater than values for semiconducting single-walled carbon nanotubes. This large anisotropy is consistent with our calculations and can be understood in terms of large orbital paramagnetism of electrons in metallic nanotubes arising from the Aharonov-Bohm-phase-induced gap opening in a parallel field. We also compare our values with previous work for semiconducting nanotubes, which confirm a break from the prediction that the magnetic susceptibility anisotropy increases linearly with the diameter.Comment: 4 pages, 4 figure

    The ATLAS trigger menu for early data-taking

    Full text link
    The ATLAS trigger system is based on three levels of event selection that select the physics of interest from an initial bunch-crossing rate of 40 MHz. During nominal LHC operations at a luminosity of 10^34 cm^-2 s^-1, decisions must be taken every 25 ns with each bunch crossing containing about 23 interactions. The selections in the three trigger levels must provide sufficient rejection to reduce the rate down to 200 Hz, compatible with the offline computing power and storage capacity. The LHC is expected to begin operations in summer 2008 with a peak luminosity of 10^31 cm^-2 s^-1 with far fewer bunches than nominal running, but quickly ramp up to higher luminosities. Hence, we need to deploy trigger selections that can adapt to the changing beam conditions preserving the interesting physics and detector requirements that may vary with these conditions. We present the status of the preparation of the trigger menu for the early data-taking showing how we plan to deploy the trigger system from the first collision to the nominal luminosity. We also show expected rates and physics performance obtained from simulated data.Comment: Poster presentation at the Hadron Collider Physics Symposium (HCP2008), Galena, Illinois, USA, May 27-31, 2008; 5 pages, LaTeX, 2 eps figure

    Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory

    Full text link
    Through an investigation of photoemission properties of highly-photoexcited single-walled carbon nanotubes, we demonstrate that there is an upper limit on the achievable excitonic density. As the intensity of optical excitation increases, all photoluminescence emission peaks arising from different chirality single-walled carbon nanotubes showed clear saturation in intensity. Each peak exhibited a saturation value that was independent of the excitation wavelength, indicating that there is an upper limit on the excitonic density for each nanotube species. We propose that this saturation behavior is a result of efficient exciton-exciton annihilation through which excitons decay non-radiatively. In order to explain the experimental results and obtain excitonic densities in the saturation regime, we have developed a model, taking into account the generation, diffusion-limited exciton-exciton annihilation, and spontaneous decays of one-dimensional excitons. Using the model, we were able to reproduce the experimentally obtained saturation curves under certain approximations, from which the excitonic densities were estimated. The validity of the model was confirmed through comparison with Monte Carlo simulations. Finally, we show that the conventional rate equation for exciton-exciton annihilation without taking into account exciton diffusion fails to fit the experimentally observed saturation behavior, especially at high excitonic densities.Comment: 5 figures, 1 tabl
    corecore