8,478 research outputs found

    Novel Radiation-induced Magnetoresistance Oscillations in a Nondegenerate 2DES on Liquid Helium

    Full text link
    We report the observation of novel magnetoresistance oscillations induced by the resonant inter-subband absorption in nondegenerate 2D electrons bound to the surface of liquid helium. The oscillations are periodic in 1/B and originate from the scattering-mediated transitions of the excited electrons into the Landau states of the first subband. The structure of the oscillations is affected by the collision broadening of the Landau levels and by many-electron effects.Comment: 4 figure

    EEG Signal Processing and Classification for the Novel Tactile-Force Brain-Computer Interface Paradigm

    Full text link
    The presented study explores the extent to which tactile-force stimulus delivered to a hand holding a joystick can serve as a platform for a brain computer interface (BCI). The four pressure directions are used to evoke tactile brain potential responses, thus defining a tactile-force brain computer interface (tfBCI). We present brain signal processing and classification procedures leading to successful interfacing results. Experimental results with seven subjects performing online BCI experiments provide a validation of the hand location tfBCI paradigm, while the feasibility of the concept is illuminated through remarkable information-transfer rates.Comment: 6 pages (in conference proceedings original version); 6 figures, submitted to The 9th International Conference on Signal Image Technology & Internet Based Systems, December 2-5, 2013, Kyoto, Japan; to be available at IEEE Xplore; IEEE Copyright 201

    Collisional energy transfer in two-component plasmas

    Full text link
    The friction in plasmas consisting of two species with different temperatures is discussed together with the consequent energy transfer. It is shown that the friction between the two species has no effect on the ion acoustic mode in a quasi-neutral plasma. Using the Poisson equation instead of the quasi-neutrality reveals the possibility for an instability driven by the collisional energy transfer. However, the different starting temperatures of the two species imply an evolving equilibrium. It is shown that the relaxation time of the equilibrium electron-ion plasma is, in fact, always shorter than the growth rate time, and the instability can thus never effectively take place. The results obtained here should contribute to the definite clarification of some contradictory results obtained in the past

    Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium

    Get PDF
    We present an experimental and theoretical study of the 2D dynamics of electrically charged nanoparticles trapped under a free surface of superfluid helium in a static vertical electric field. We focus on the dynamics of particles driven by the interaction with quantized vortices terminating at the free surface. We identify two types of particle trajectories and the associated vortex structures: vertical linear vortices pinned at the bottom of the container and half-ring vortices travelling along the free surface of the liquid

    Dynamics of fine particles due to quantized vortices on the surface of superfluid 4^4He

    Full text link
    Peculiar dynamics of a free surface of the superfluid 4He has been observed experimentally with a newly established technique utilizing a number of electrically charged fine metal particles trapped electrically at the surface by Moroshkin et al. They have reported that some portion of the particles exhibit some irregular motions and suggested the existence of quantized vortices interacting with the metal particles. We have conducted calculations with the vortex filament model, which turns out to support the idea of the vortex-particle interactions. The observed anomalous metal particle motions are roughly categorized into two types; (1) circular motions with specific frequencies, and (2) quasi-linear oscillations. The former ones seem to be explained once we consider a vertical vortex filament whose edges are terminated at the bottom and at a particle trapped at the surface. Although it is not yet clear whether all the anomalous motions are due to the quantum vortices, the vortices seem to play important roles for the motions.Comment: 7 pages, 10 figure
    • …
    corecore