33 research outputs found

    Freezing transitions and the density of states of 2D random Dirac Hamiltonians

    Full text link
    Using an exact mapping to disordered Coulomb gases, we introduce a novel method to study two dimensional Dirac fermions with quenched disorder in two dimensions which allows to treat non perturbative freezing phenomena. For purely random gauge disorder it is known that the exact zero energy eigenstate exhibits a freezing-like transition at a threshold value of disorder σ=σth=2\sigma=\sigma_{th}=2. Here we compute the dynamical exponent zz which characterizes the critical behaviour of the density of states around zero energy, and find that it also exhibits a phase transition. Specifically, we find that ρ(E=0+iϵ)ϵ2/z1\rho(E=0 + i \epsilon) \sim \epsilon^{2/z-1} (and ρ(E)E2/z1\rho(E) \sim E^{2/z-1}) with z=1+σz=1 + \sigma for σ<2\sigma < 2 and z=8σ1z=\sqrt{8 \sigma} - 1 for σ>2\sigma > 2. For a finite system size L<ϵ1/zL<\epsilon^{-1/z} we find large sample to sample fluctuations with a typical ρϵ(0)Lz2\rho_{\epsilon}(0) \sim L^{z-2}. Adding a scalar random potential of small variance δ\delta, as in the corresponding quantum Hall system, yields a finite noncritical ρ(0)δα\rho(0) \sim \delta^{\alpha} whose scaling exponent α\alpha exhibits two transitions, one at σth/4\sigma_{th}/4 and the other at σth\sigma_{th}. These transitions are shown to be related to the one of a directed polymer on a Cayley tree with random signs (or complex) Boltzmann weights. Some observations are made for the strong disorder regime relevant to describe transport in the quantum Hall system
    corecore