7,627 research outputs found

    Uq(sl^n)U_q(\hat{sl}_n)-analog of the XXZ chain with a boundary

    Full text link
    We study Uq(sl^n)U_q(\hat{sl}_n) analog of the XXZ spin chain with a boundary magnetic field h. We construct explicit bosonic formulas of the vacuum vector and the dual vacuum vector with a boundary magnetic field. We derive integral formulas of the correlation functions.Comment: 24 pages, LaTEX2

    The Integrals of Motion for the Deformed W-Algebra Wqt(slN)W_{qt}(sl_N^) II: Proof of the commutation relations

    Full text link
    We explicitly construct two classes of infinitly many commutative operators in terms of the deformed W-algebra Wqt(slN)W_{qt}(sl_N^), and give proofs of the commutation relations of these operators. We call one of them local integrals of motion and the other nonlocal one, since they can be regarded as elliptic deformation of local and nonlocal integrals of motion for the WNW_N algebra.Comment: Dedicated to Professor Tetsuji Miwa on the occasion on the 60th birthda

    The R-Mode Oscillations in Relativistic Rotating Stars

    Get PDF
    The axial mode oscillations are examined for relativistic rotating stars with uniform angular velocity. Using the slow rotation formalism and the Cowling approximation, we have derived the equations governing the r-mode oscillations up to the second order with respect to the rotation. In the lowest order, the allowed range of the frequencies is determined, but corresponding spatial function is arbitrary. The spatial function can be decomposed in non-barotropic region by a set of functions associated with the differential equation of the second-order corrections. The equation however becomes singular in barotropic region, and a single function can be selected to describe the spatial perturbation of the lowest order. The frame dragging effect among the relativistic effects may be significant, as it results in rather broad spectrum of the r-mode frequency unlike in the Newtonian first-order calculation.Comment: 19 pages, 4 figures, AAS LaTeX, Accepted for publication in The Astrophysical Journa

    Vertex operator approach for form factors of Belavin's (Z/nZ)(Z/nZ)-symmetric model

    Full text link
    Belavin's (Z/nZ)(\mathbb{Z}/n\mathbb{Z})-symmetric model is considered on the basis of bosonization of vertex operators in the An1(1)A^{(1)}_{n-1} model and vertex-face transformation. Free field representations of nonlocal tail operators are constructed for off diagonal matrix elements with respect to the ground state sectors. As a result, integral formulae for form factors of any local operators in the (Z/nZ)(\mathbb{Z}/n\mathbb{Z})-symmetric model can be obtained, in principle.Comment: 24 pages, 4 figures, published in J. Phys. A: Math. Theor. 43 (2010) 085202. For the next thirty days from Feb 5 2010, the full text of the article will be completely free to access through our 'This Month's Papers' service (www.iop.org/journals/thismonth), helping you to benefit from maximum visibilit

    The imposition of Cauchy data to the Teukolsky equation II: Numerical comparison with the Zerilli-Moncrief approach to black hole perturbations

    Get PDF
    We revisit the question of the imposition of initial data representing astrophysical gravitational perturbations of black holes. We study their dynamics for the case of nonrotating black holes by numerically evolving the Teukolsky equation in the time domain. In order to express the Teukolsky function Psi explicitly in terms of hypersurface quantities, we relate it to the Moncrief waveform phi_M through a Chandrasekhar transformation in the case of a nonrotating black hole. This relation between Psi and phi_M holds for any constant time hypersurface and allows us to compare the computation of the evolution of Schwarzschild perturbations by the Teukolsky and by the Zerilli and Regge-Wheeler equations. We explicitly perform this comparison for the Misner initial data in the close limit approach. We evolve numerically both, the Teukolsky (with the recent code of Ref. [1]) and the Zerilli equations, finding complete agreement in resulting waveforms within numerical error. The consistency of these results further supports the correctness of the numerical code for evolving the Teukolsky equation as well as the analytic expressions for Psi in terms only of the three-metric and the extrinsic curvature.Comment: 14 pages, 7 Postscript figures, to appear in Phys. Rev.
    corecore