13 research outputs found

    Canine IgA nephropathy: a case report

    No full text

    Paraffin immunofluorescence for detection of immune complexes in renal biopsies: an efficient salvage technique for diagnosis of glomerulonephritis in dogs

    No full text
    Abstract Background Renal biopsy is an essential tool for the diagnosis of proteinuric kidney diseases in dogs, and evaluation of immune complexes (IC) by immunofluorescence (IF) of frozen sections (IF-F) is required for the diagnosis of IC-mediated glomerulonephritis (ICGN). However, the use of frozen sections from renal biopsies can have limitations. The aim of this study was to develop a reliable IF method using formalin-fixed and paraffin-embedded (FFPE) sections to detect ICs in dog ICGN. Methods Renal biopsy specimens were obtained from dogs with protein-losing nephropathies. FFPE sections were prepared, and eight antigen retrieval pretreatment protocols were performed: digestion with trypsin, microwave (MW) heating in citrate buffer (MW-CB; pH 6.0), MW heating in Tris-EDTA buffer (MW-TEB; pH 9.0), as well as combinations of the above, and a non-treated control. Results A combination of trypsin for 30 min (Try-30) and MW-TEB; pH 9.0 was the most effective antigen retrieval pretreatment, with clear positive signals for IgG, IgA, IgM, and C3 detected by IF-FFPE. Granular signals, an important diagnostic indicator of ICGN, were clearly observed by both IF-F and IF-FFPE after combined pretreatment with Try-30 and MW-TEB, and IgG, IgA, IgM, and C3 signals were almost completely matched in all samples by IF-F and IF-FFPE. Conclusion IF-FFPE with Try-30 and MW-TEB pretreatment is a valuable technique for the diagnosis of renal diseases in dogs. This method could be an efficient tool when standard IF-F cannot be used, or does not provide useful results due to lack of glomeruli in the specimens for IF-F

    GM1 gangliosidosis in a Japanese domestic cat: a new variant identified in Hokkaido, Japan

    Get PDF
    A male Japanese domestic cat with retarded growth in Hokkaido, Japan, showed progressive motor dysfunction, such as ataxia starting at 3 months of age and tremors, visual disorder and seizure after 4 months of age. Finally, the cat died of neurological deterioration at 9 months of age. Approximately half of the peripheral blood lymphocytes had multiple abnormal vacuoles. Magnetic resonance imaging showed bisymmetrical hyperintensity in the white matter of the parietal and occipital lobes in the forebrain on T2-weighted and fluid-attenuated inversion recovery images, and mild encephalatrophy of the olfactory bulbs and temporal lobes. The activity of lysosomal acid β-galactosidase in leukocytes was negligible, resulting in the biochemical diagnosis of GM1 gangliosidosis. Histologically, swollen neurons characterized by accumulation of pale, slightly granular cytoplasmic materials were observed throughout the central nervous system. Dysmyelination or demyelination and gemistocytic astrocytosis were observed in the white matter. Ultrastructually, membranous cytoplasmic bodies were detected in the lysosomes of neurons. However, genetic analysis did not identify the c.1448G>C mutation, which is the single known mutation of feline GM1 gangliosidosis, suggesting that the cat was affected with a new variant of the feline disease

    High Frequency of a Single Nucleotide Substitution (c.-6-180T>G) of the Canine MDR1/ABCB1 Gene Associated with Phenobarbital-Resistant Idiopathic Epilepsy in Border Collie Dogs

    Get PDF
    A single nucleotide substitution (c.-6-180T>G) associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9%) in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies
    corecore