3,509 research outputs found

    Optical experiments on 3D photonic crystals

    Get PDF
    Photonic crystals are optical materials that have an intricate structure with length scales of the order of the wavelength of light. The flow of photons is controlled in a manner analogous to how electrons propagate through semiconductor crystals, i.e., by Bragg diffraction and the formation of band structures. If the interaction between light and matter is made strong, multiple diffraction and multiple scattering effects dominate. A main research goal is the realization of a "photonic band gap", that is, a frequency range for which no light can propagate in a crystal in any direction, which causes radical modifications of the density of radiative states. Important consequences of photonic band gaps are the complete control over spontaneous and stimulated emission of light, as well as over the propagation of light, in particular photon localization. This opens up the possibility to achieve a "cage for light": trap photons and do with them whatever one chooses. In this talk we will also review means for making such structures, and recent experimental advances in optical experiments

    Dynamically reconfigurable directionality of plasmon-based single photon sources

    Get PDF
    We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitter into multiple narrow beams. We predict that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication
    • …
    corecore