6,616 research outputs found
Effects of nucleus initialization on event-by-event observables
In this work we present a study of the influence of nucleus initializations
on the event-by-event elliptic flow coefficient, . In most Monte-Carlo
models, the initial positions of the nucleons in a nucleus are completely
uncorrelated, which can lead to very high density regions. In a simple, yet
more realistic model where overlapping of the nucleons is avoided, fluctuations
in the initial conditions are reduced. However, distributions are not
very sensitive to the initialization choice.Comment: 4 pages, 5 figures, to appear in the Bras. Jour. Phy
New X-ray Clusters in the EMSS II: Optical Properties
We present optical images for 9 new clusters of galaxies we have found in a
reanalysis of the Einstein IPC images comprising the Extended Medium
Sensitivity Survey (EMSS). Based on the presence of a red sequence of galaxies
in a color-magnitude (CM) diagram, a redshift is estimated for each cluster.
Galaxy overdensities (cluster richnesses) are measured in each field using the
B_gc statistic which allows their plausible identification with the X-ray
emission. The nature of our X-ray detection algorithm suggests that most of
these clusters have low X-ray surface brightness (LSB) compared to the
previously known EMSS clusters. We compare the optical and X-ray observations
of these clusters with the well-studied Canadian Network for Observational
Cosmology (CNOC) subsample of the EMSS, and conclude that the new clusters
exhibit a similar range of optical richnesses, X-ray luminosities, and,
somewhat surprisingly, galaxy populations as the predominantly rich, relaxed
EMSS/CNOC clusters.Comment: Accepted to ApJ, 17 pages, 14 figures, uses emulateapj5.st
Cluster induced quenching of galaxies in the massive cluster XMMXCSJ2215.9-1738 at z~1.5 traced by enhanced metallicities inside half R200
(Abridged) We explore the massive cluster XMMXCSJ2215.9-1738 at z~1.5 with
KMOS spectroscopy of Halpha and [NII] covering a region that corresponds to
about one virial radius. Using published spectroscopic redshifts of 108
galaxies in and around the cluster we computed the location of galaxies in the
projected velocity vs. position phase-space to separate our cluster sample into
a virialized region of objects accreted longer ago (roughly inside half R200)
and a region of infalling galaxies. We measured oxygen abundances for ten
cluster galaxies with detected [NII] lines in the individual galaxy spectra and
compared the MZR of the galaxies inside half R200 with the infalling galaxies
and a field sample at similar redshifts. We find that the oxygen abundances of
individual z~1.5 star-forming cluster galaxies inside half R200 are comparable,
at the respective stellar mass, to the higher local SDSS metallicity values. We
find that the [NII]/Halpha line ratios inside half R200 are higher by 0.2 dex
and that the resultant metallicities of the galaxies in the inner part of the
cluster are higher by about 0.1 dex, at a given mass, than the metallicities of
infalling galaxies and of field galaxies at z~1.5. The enhanced metallicities
of cluster galaxies at z~1.5 inside half R200 indicate that the density of the
ICM in this massive cluster becomes high enough toward the cluster center such
that the ram pressure exceeds the restoring pressure of the hot gas reservoir
of cluster galaxies. This can remove the gas reservoir initiating quenching;
although the galaxies continue to form stars, albeit at slightly lower rates,
using the available cold gas in the disk which is not stripped.Comment: Accepted for publication in A&
Evolution of Cosmological Perturbations in the Long Wavelength Limit
The relation between the long wavelength limit of solutions to the
cosmological perturbation equations and the perturbations of solutions to the
exactly homogeneous background equations is investigated for scalar
perturbations on spatially flat cosmological models. It is shown that a
homogeneous perturbation coincides with the long wavelength limit of some
inhomogeneous perturbation only when the former satisfies an additional
condition corresponding to the momentum constraint if the matter consists only
of scalar fields. In contrast, no such constraint appears if the fundamental
variables describing the matter contain a vector field as in the case of a
fluid. Further, as a byproduct of this general analysis, it is shown that there
exist two universal exact solutions to the perturbation equations in the long
wavelength limit, which are expressed only in terms of the background
quantities. They represent adiabatic growing and decaying modes, and correspond
to the well-known exact solutions for perfect fluid systems and scalar field
systems.Comment: 16 pages, no figure, submitted to PR
Elastic amplitudes studied with the LHC measurements at 7 and 8 TeV
Recent measurements of the differential cross sections in the forward region
of pp elastic scattering at 7 and 8 TeV show precise form of the
dependence. We propose a detailed analysis of these measurements including the
structures of the real and imaginary parts of the scattering amplitude. A good
description is achieved, confirming in all experiments the existence of a zero
in the real part in the forward region close to the origin, in agreement with
the prediction of a theorem by A. Martin, with important role in the observed
form of . Universal value for the position of this zero and
regularity in other features of the amplitudes are found, leading to
quantitative predictions for the forward elastic scattering at 13 TeV.Comment: 22 pages, 17 figures and 4 table
Homogeneity of Stellar Populations in Early-Type Galaxies with Different X-ray Properties
We have found the stellar populations of early-type galaxies are homogeneous
with no significant difference in color or Mg2 index, despite the dichotomy
between X-ray extended early-type galaxies and X-ray compact ones. Since the
X-ray properties reflect the potential gravitational structure and hence the
process of galaxy formation, the homogeneity of the stellar populations implies
that the formation of stars in early-type galaxies predat es the epoch when the
dichotomy of the potential structure was established.Comment: 6 pages, 5 figures, accepted for publication in Ap
Current-perpendicular-to-plane giant magnetoresistance of a spin valve using Co2MnSi Heusler alloy electrodes
We report the current-perpendicular-to-plane giant magnetoresistance of a
spin valve with Co2MnSi (CMS) Heusler alloy ferromagnetic electrodes. A
multilayer stack of Cr/Ag/Cr/CMS/Cu/CMS/Fe25Co75/Ir28Mn72/Ru was deposited on a
MgO (001) single crystal substrate. The bottom CMS layer was epitaxially grown
on the Cr/Ag/Cr buffer layers and was ordered to the L21 structure after
annealing at 673 K. The upper CMS layer was found to grow epitaxially on the Cu
spacer layer despite the large lattice mismatch between Cu and CMS. The highest
MR ratios of 8.6% and 30.7% for CPP-GMR were recorded at room temperature and 6
K, respectively. The high spin polarization of the epitaxial CMS layers is the
most likely origin of the high MR ratio.Comment: 14 pages, 3 figures, presented at the 53rd Annual Conference on
Magnetism and Magnetic Materials, to be published in J. Appl. Phy
- âŠ