99 research outputs found

    RP105-Negative B Cells in Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a multisystem disease characterized by B cells producing autoantibodies against nuclear proteins and DNA, especially anti-double-strand DNA (dsDNA) antibodies. RP105 (CD180), the toll-like receptor- (TLR-) associated molecule, is expressed on normal B cells. However, RP105-negative B cells increase in peripheral blood from patients with active SLE. RP105 may regulate B-cell activation, and RP105-negative B cells produce autoantibodies and take part in pathophysiology of SLE. It is possible that targeting RP105-negative B cells is one of the treatments of SLE. In this paper, we discuss the RP105 biology and clinical significance in SLE

    Roles of B Cell-Intrinsic TLR Signals in Systemic Lupus Erythematosus

    Get PDF
    Toll-like receptors (TLRs) are a large family of pattern recognition receptors. TLR signals are involved in the pathogenesis of systemic lupus erythematosus. Mouse and human B cells constitutively express most TLRs. Many B cell subpopulations are highly responsive to certain TLR ligation, including B-1 B cells, transitional B cells, marginal zone B cells, germinal center B cell and memory B cells. The B cell-intrinsic TLR signals play critical roles during lupus process. In this review, roles of B cell-intrinsic TLR2, 4, 7, 8 and 9 signals are discussed during lupus pathogenesis in both mouse model and patients. Moreover, mechanisms underlying TLR ligation-triggered B cell activation and signaling pathways are highlighted.published_or_final_versio

    Phenotyping of P105-Negative B Cell Subsets in Patients with Systemic Lupus Erythematosus

    Get PDF
    This study aimed to investigate phenotype of RP105(−) B cell subsets in patients with systemic lupus erythematosus (SLE). Flow cytometry was used for phenotyping RP105-negaive B cell subsets. Based on CD19, RP105, and CD138 expression, RP105(−) B cells consist of at least 5 subsets of late B cells, including CD19(+)RP105(int), CD19(+) RP105(−), CD19(low) RP105(−) CD138(−), CD19(low) RP105(−)CD138(int), and CD19(low) RP105(−) CD138(++) B cells. Especially, CD19(+)RP105(int) and CD19(low) RP105(−)CD138(int) B cells are significantly larger than other RP105(−) B cell subsets in SLE. By comparison of RP105(−) B cell subsets between patients with SLE and normal subjects, these subsets were detectable even in normal subjects, but the percentages of RP105(−) B cell subsets were significantly larger in SLE. The phenotypic analysis of RP105(−) B cell subsets suggests dysregulation of later B cell subsets in SLE and may provide new insights into understanding regulation of B cells in human SLE

    Alterations of renal phenotype and gene expression profiles due to protein overload in NOD-related mouse strains

    Get PDF
    BACKGROUND: Despite multiple causes, Chronic Kidney Disease is commonly associated with proteinuria. A previous study on Non Obese Diabetic mice (NOD), which spontaneously develop type 1 diabetes, described histological and gene expression changes incurred by diabetes in the kidney. Because proteinuria is coincident to diabetes, the effects of proteinuria are difficult to distinguish from those of other factors such as hyperglycemia. Proteinuria can nevertheless be induced in mice by peritoneal injection of Bovine Serum Albumin (BSA). To gain more information on the specific effects of proteinuria, this study addresses renal changes in diabetes resistant NOD-related mouse strains (NON and NOD.B10) that were made to develop proteinuria by BSA overload. METHODS: Proteinuria was induced by protein overload on NON and NOD.B10 mouse strains and histology and microarray technology were used to follow the kidney response. The effects of proteinuria were assessed and subsequently compared to changes that were observed in a prior study on NOD diabetic nephropathy. RESULTS: Overload treatment significantly modified the renal phenotype and out of 5760 clones screened, 21 and 7 kidney transcripts were respectively altered in the NON and NOD.B10. Upregulated transcripts encoded signal transduction genes, as well as markers for inflammation (Calmodulin kinase beta). Down-regulated transcripts included FKBP52 which was also down-regulated in diabetic NOD kidney. Comparison of transcripts altered by proteinuria to those altered by diabetes identified mannosidase 2 alpha 1 as being more specifically induced by proteinuria. CONCLUSION: By simulating a component of diabetes, and looking at the global response on mice resistant to the disease, by virtue of a small genetic difference, we were able to identify key factors in disease progression. This suggests the power of this approach in unraveling multifactorial disease processes

    A modular theory of autoimmunity

    No full text

    Immediate Effect of Baricitinib on Arthritis and Biological Disease-Modifying Antirheumatic Drug-Induced Psoriasis-Like Skin Lesions in Two Patients with Rheumatoid Arthritis

    No full text
    Biological disease-modifying antirheumatic drugs (bDMARDs) are very effective for treating rheumatoid arthritis (RA). However, they sometimes induce adverse events such as psoriasis-like skin lesions. We describe psoriasis-like skin lesions that developed simultaneously with an RA flare in patient 1 during treatment with abatacept and in patient 2 soon after starting certolizumab pegol. The skin lesions persisted in patient 2 despite stopping certolizumab. Baricitinib was initiated because of RA flare and resulted in immediate beneficial effects on arthritis as well as skin lesions. The RA went into remission in both patients, and the psoriasis-like skin lesions disappeared within four weeks (patient 1) and three months (patient 2)
    corecore