32 research outputs found

    Influence of the hydrogen bond on the N-H stretching frequencies in amino-acids

    No full text
    The spectra of glycine, its addition compounds and other amino-acids exhibit Raman lines in the region from 3250 cm.−1 to 2500 cm.−1 It has been shown that these lines cannot be assigned to N-H...O stretching vibrations, where the N atom has the covalency of three, but to N+-H...O stretching vibration where the N atom has the covalency of four. Using the data obtained with triglycine sulphate which has the largest number of N+-H...O bonds and whose H bond lengths are known, the correlation curve giving the relation between the N+-H...O stretching frequencies and the corresponding H bond lengths has been drawn. Using this correlation curve, the N+-H...O stretching frequencies appearing inα-glycine,γ-glycine, diglycine hydrochloride, diglycine hydrobromide,l-asparagine monohydrate anddl-alanine have been satisfactorily accounted for on the basis of the known hydrogen bond lengths in these substances

    Theoretical foundations for multiple rendezvous of glowworm-inspired mobile agents with variable local-decision domains

    No full text
    We present the theoretical foundations for the multiple rendezvous problem involving design of local control strategies that enable groups of visibility-limited mobile agents to split into subgroups, exhibit simultaneous taxis behavior towards, and eventually rendezvous at, multiple unknown locations of interest. The theoretical results are proved under certain restricted set of assumptions. The algorithm used to solve the above problem is based on a glowworm swarm optimization (GSO) technique, developed earlier, that finds multiple optima of multimodal objective functions. The significant difference between our work and most earlier approaches to agreement problems is the use of a virtual local-decision domain by the agents in order to compute their movements. The range of the virtual domain is adaptive in nature and is bounded above by the maximum sensor/visibility range of the agent. We introduce a new decision domain update rule that enhances the rate of convergence by a factor of approximately two. We use some illustrative simulations to support the algorithmic correctness and theoretical findings of the paper

    Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations

    No full text
    We present theoretical foundations for a variation of the multi-agent rendezvous problem involving design of local control strategies that enable agent swarms, with hard-limited sensing ranges, to split into disjoint subgroups, exhibit simultaneous taxis behavior toward, and eventually rendezvous at, multiple unknown locations of interest. The algorithm used to solve the above problem is based on a glowworm swarm optimization (GSO) technique, developed earlier, that finds multiple optima of multi-modal objective functions. We characterize the various phases of the algorithm that help us to develop a theoretical framework required for analysis. In particular, we show through simulations that the implementation of the GSO algorithm at the individual agent level gives rise to two major phases at the group level – splitting of the agent-swarm into subgroups and local convergence of agents in each subgroup to the peak locations. We provide local convergence results under certain restricted set of assumptions, leading to a simplified model of the algorithm, making it amenable to analysis, while still reflecting most of the features of the original algorithm. In particular, we find an upper bound on the time taken by the agents to converge to an isolated leader and on the time taken by the agents to converge to one of the leaders with non-isolated and non-overlapping neighborhoods. Finally, we show that agents under the influence of multiple leaders with overlapping neighborhoods asymptotically converge to one of the leaders. We present some illustrative simulations to support the theoretical findings of the paper

    Detection of multiple source locations using a glowworm metaphor with applications to collective robotics

    No full text
    This paper presents a glowworm swarm based algorithm that finds solutions to optimization of multiple optima continuous functions. The algorithm is a variant of a well known ant-colony optimization (ACO) technique, but with several significant modifications. Similar to how each moving region in the ACO technique is associated with a pheromone value, the agents in our algorithm carry a luminescence quantity along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luminescence and have a circular sensor range. The glowworms depend on a local-decision domain to compute their movements. Simulations demonstrate the efficacy of the proposed glowworm based algorithm in capturing multiple optima of a multimodal function. The above optimization scenario solves problems where a collection of autonomous robots is used to form a mobile sensor network. In particular, we address the problem of detecting multiple sources of a general nutrient profile that is distributed spatially on a two dimensional workspace using multiple robots

    Raman spectra of ferro-electric crystals Part IV. Lithium hydrazinium sulphate (LiN2H5SO4)

    No full text
    The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature

    Formations of minimalist mobile robots using local-templates and spatially distributed interactions

    No full text
    In this paper we address the problem of synthesizing simple rules and local interactions at the individual level so that prespecified complex behavior emerges at the group level of a collection of autonomous mobile agents. Usually, the emergent Collective behavior is used to perform certain spatial group-tasks. Specifically, we consider self-assembling of a group of mobile robots into grid, line, and wedge patterns. We introduce the notion of local-templates in which each mobile agent - capable of simple forward/backward movements and a clock-wise/counter clock-wise spin - actively encodes distinctive information into multiple non-overlapping sectorial regions of the surrounding environment in order to form pose-specific virtual links with similar minimalist agents in a local neighborhood. The resulting local patterns around each agent lead to the desired global formation. In order to take mobile robots closer to their biological counterparts, there is a need to further simplify the manner in which they currently perceive their surroundings, communicate with their neighbors, and compute their actions. We have built a robotic platform consisting of four wheeled-mobile robots that are christened as Kinbots. They are similar in principle to Braitenberg Vehicles and use simple perception/interaction/actuation techniques to achieve individual vehicle complexity and produce effective group behavior through cooperation. To validate the proposed approach, we demonstrate a column-formation task in Computer simulations and physical experiments. We illustrate an experiment which is representative of various prominent stages in a group-formation task such as formation-achievement, maintenance, and response of formation movement to the presence of obstacles
    corecore