56 research outputs found

    Prefracture functional level evaluated by the New Mobility Score predicts in-hospital outcome after hip fracture surgery

    Get PDF
    BACKGROUND AND PURPOSE: Clinicians need valid and easily applicable predictors of outcome in patients with hip fracture. Adjusting for previously established predictors, we determined the predictive value of the New Mobility score (NMS) for in-hospital outcome in patients with hip fracture. PATIENTS AND METHODS: We studied 280 patients with a median age of 81 (interquartile range 72-86) years who were admitted from their own homes to a special hip fracture unit. Main outcome was the regain of independence in basic mobility, defined as. independence in getting in and out of bed, sitting down and standing up from a chair, and walking with an appropriate walking aid. The Cumulated Ambulation score was used to evaluate basic mobility. Predictor variables were NMS functional level before fracture, age, sex, fracture type, and mental and health status. RESULTS: Except for sex, all predictor variables were statistically significant in univariate testing. In multiple logistic regression analysis, only age, NMS functional level before fracture, and fracture type were significant. Thus, patients with a low prefracture NMS and/or an intertrochanteric fracture would be 18 and 4 times more likely not to regain independence in basic mobility during the hospital stay, respectively, than patients with a high prefracture level and a cervical fracture, respectively. The model was statistically stable and correctly classified 84% of cases. INTERPRETATION: The NMS functional level before fracture, age, and fracture type facilitate prediction of the in-hospital rehabilitation potential after hip fracture surgery

    Functional expression of complement factor I following AAV-mediated gene delivery in the retina of mice and human cells.

    Get PDF
    Funder: NIHR Oxford Biomedical Research CentreDry age-related macular degeneration (AMD) is characterised by loss of central vision and currently has no approved medical treatment. Dysregulation of the complement system is thought to play an important role in disease pathology and supplementation of Complement Factor I (CFI), a key regulator of the complement system, has the potential to provide a treatment option for AMD. In this study, we demonstrate the generation of AAV constructs carrying the human CFI sequence and expression of CFI in cell lines and in the retina of C57BL/6 J mice. Four codon optimised constructs were compared to the most common human CFI sequence. All constructs expressed CFI protein; however, most codon optimised sequences resulted in significantly reduced CFI secretion compared to the non-optimised CFI sequence. In vivo expression analysis showed that CFI was predominantly expressed in the RPE and photoreceptors. Secreted protein in vitreous humour was demonstrated to be functionally active. The findings presented here have led to the formulation of an AAV-vectored gene therapy product currently being tested in a first-in-human clinical trial in subjects with geographic atrophy secondary to dry AMD (NCT03846193)

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum

    Get PDF
    Background: Previous comparative proteomic analysis on Plasmodium falciparum isolates of different adhesion properties suggested that protein phosphorylation varies between isolates with different cytoadherence properties. But the extent and dynamic changes in phosphorylation have not been systematically studied. As a baseline for these future studies, this paper examined changes in the phosphoproteome of parasitized red blood cells (pRBC). Methods: Metabolic labelling with [S-35] methionine on pRBC and 2D gel electrophoresis (2-DE) has previously been used to show the expression of parasite proteins and changes in protein iso-electric point (PI). 2-DE of different parasite strains was combined with immunoblotting using monoclonal antibodies specifically to phosphorylated serine/threonine and tyrosine, to obtain the phosphorylation profiles throughout the erythrocytic lifecycle. Affinity chromatography was used to purify/enrich phosphorylated proteins and these proteins from mature trophozoite stages which were identified using high-accuracy mass spectrometry and MASCOT search. Results: 2D-immunoblots showed that P. falciparum infection greatly increased phosphorylation of a set of proteins in pRBC, the dominant size classes for phosphorylated tyrosine proteins were 95, 60, 50 and 30 kDa and for phosphorylated serine/threonine were 120, 95, 60, 50, 43, 40 and 30 kDa. The most abundant molecules from 2D-gel mapping of phosphorylated proteins in ItG infected RBCs were identified by MALDI-TOF. A proteomic overview of phosphorylated proteins in pRBC was achieved by using complementary phosphorylated protein enrichment techniques combined with nano-flow LC/MS/MS analysis and MASCOT MS/MS ions search with phosphorylation as variable modifications. The definite phosphoproteins of pRBC are reported and discussed. Conclusion: Protein phosphorylation is a major process in P. falciparum-parasitized erythrocytes. Preliminary screens identified 170 P. falciparum proteins and 77 human proteins as phosphorylated protein in pRBC, while only 48 human proteins were identified in the corresponding fractions from uninfected RBC. Refinement of the search to include significant ion scores indicating a specific phospho-peptide identified 21 P. falciparum proteins and 14 human proteins from pRBC, 13 host proteins were identified from normal RBC. The results achieved by complementary techniques consistently reflect a reliable proteomic overview of pRBC

    Thrombotic disease in systemic lupus erythematosus is associated with a maintained systemic platelet activation

    No full text
    Patients with systemic lupus erythematosus (SLE) have an increased risk of thrombosis. Platelet-induced extracellular phosphorylation of plasma proteins suggests that this is due to persistent activation of the platelets. We examined 30 SLE patients (15 with thrombotic disease), 18 non-SLE patients with deep vein thrombosis (DVT) and 50 healthy controls by analysing beta-thromboglobulin, activated factor XI-antithrombin complexes and fibrinogen-bound phosphate. All parameters were elevated in SLE patients, particularly those with thrombosis, but normal in DVT cases and healthy controls. We conclude that thrombotic disease in SLE patients is associated with a persistent systemic platelet activation that may lower the threshold for induction of thrombosis
    corecore