65 research outputs found
The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.
The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere
Expression analysis of E-cadherin, Slug and GSK3β in invasive ductal carcinoma of breast
<p>Abstract</p> <p>Background</p> <p>Cancer progression is linked to a partially dedifferentiated epithelial cell phenotype. The signaling pathways Wnt, Hedgehog, TGF-β and Notch have been implicated in experimental and developmental epithelial mesenchymal transition (EMT). Recent findings from our laboratory confirm that active Wnt/β-catenin signaling is critically involved in invasive ductal carcinomas (IDCs) of breast.</p> <p>Methods</p> <p>In the current study, we analyzed the expression patterns and relationships between the key Wnt/β-catenin signaling components- E-cadherin, Slug and GSK3β in IDCs of breast.</p> <p>Results</p> <p>Of the 98 IDCs analyzed, 53 (54%) showed loss/or reduced membranous staining of E-cadherin in tumor cells. Nuclear accumulation of Slug was observed in 33 (34%) IDCs examined. Loss or reduced level of cytoplasmic GSK3β expression was observed in 52/98 (53%) cases; while 34/98 (35%) tumors showed nuclear accumulation of GSK3β. Statistical analysis revealed associations of nuclear Slug expression with loss of membranous E-cadherin (p = 0.001); nuclear β-catenin (p = 0.001), and cytoplasmic β-catenin (p = 0.005), suggesting Slug mediated E-cadherin suppression via the activation of Wnt/β-catenin signaling pathway in IDCs. Our study also demonstrated significant correlation between GSK3β nuclear localization and tumor grade (p = 0.02), suggesting its association with tumor progression.</p> <p>Conclusion</p> <p>The present study for the first time provided the clinical evidence in support of Wnt/β-catenin signaling upregulation in IDCs and key components of this pathway - E-cadherin, Slug and GSK3β with β-catenin in implementing EMT in these cells.</p
P-cadherin expression in breast cancer: a review
P-cadherin is frequently over-expressed in high-grade invasive breast carcinomas and has been reported to be an enhancer of migration and invasion of breast cancer cells, being correlated with tumour aggressiveness. In addition, expression of P-cadherin is well established as an indicator of poor prognosis in human breast cancer, which has stimulated our interest in studying its role in this setting. This review describes the most important findings on P-cadherin expression and function in normal mammary tissue and breast cancer cells, emphasizing that further research is required to elucidate the role played by this protein in human mammary tumours
- …