11 research outputs found

    Toward a Comprehensive Approach to the Collection and Analysis of Pica Substances, with Emphasis on Geophagic Materials

    Get PDF
    Pica, the craving and subsequent consumption of non-food substances such as earth, charcoal, and raw starch, has been an enigma for more than 2000 years. Currently, there are little available data for testing major hypotheses about pica because of methodological limitations and lack of attention to the problem.In this paper we critically review procedures and guidelines for interviews and sample collection that are appropriate for a wide variety of pica substances. In addition, we outline methodologies for the physical, mineralogical, and chemical characterization of these substances, with particular focus on geophagic soils and clays. Many of these methods are standard procedures in anthropological, soil, or nutritional sciences, but have rarely or never been applied to the study of pica.Physical properties of geophagic materials including color, particle size distribution, consistency and dispersion/flocculation (coagulation) should be assessed by appropriate methods. Quantitative mineralogical analyses by X-ray diffraction should be made on bulk material as well as on separated clay fractions, and the various clay minerals should be characterized by a variety of supplementary tests. Concentrations of minerals should be determined using X-ray fluorescence for non-food substances and inductively coupled plasma-atomic emission spectroscopy for food-like substances. pH, salt content, cation exchange capacity, organic carbon content and labile forms of iron oxide should also be determined. Finally, analyses relating to biological interactions are recommended, including determination of the bioavailability of nutrients and other bioactive components from pica substances, as well as their detoxification capacities and parasitological profiles.This is the first review of appropriate methodologies for the study of human pica. The comprehensive and multi-disciplinary approach to the collection and analysis of pica substances detailed here is a necessary preliminary step to understanding the nutritional enigma of non-food consumption

    Protein-guided RNA dynamics during early ribosome assembly

    No full text
    The assembly of 30S ribosomes requires the precise addition of 20 proteins to the 16S ribosomal RNA. How early binding proteins change the ribosomal RNA structure so that later proteins may join the complex is poorly understood. Here we use single-molecule fluorescence resonance energy transfer (FRET) to observe real-time encounters between Escherichia coli ribosomal protein S4 and the 16S 5??? domain RNA at an early stage of 30S assembly. Dynamic initial S4-RNA complexes pass through a stable non-native intermediate before converting to the native complex, showing that non-native structures can offer a low free-energy path to protein-RNA recognition. Three-colour FRET and molecular dynamics simulations reveal how S4 changes the frequency and direction of RNA helix motions, guiding a conformational switch that enforces the hierarchy of protein addition. These protein-guided dynamics offer an alternative explanation for induced fit in RNA-protein complexes.close5

    RNA folding in living cells

    No full text
    RNA folding is the most essential process underlying RNA function. While significant progress has been made in understanding the forces driving RNA folding in vitro, exploring the rules governing intracellular RNA structure formation is still in its infancy. The cellular environment hosts a great diversity of factors that potentially influence RNA folding in vivo. For example, the nature of transcription and translation is known to shape the folding landscape of RNA molecules. Trans-acting factors such as proteins, RNAs and metabolites, among others, are also able to modulate the structure and thus the fate of an RNA. Here we summarize the ongoing efforts to uncover how RNA folds in living cells

    Structure and function of long noncoding RNAs in epigenetic regulation

    No full text
    Genomes of complex organisms encode an abundance and diversity of long noncoding RNAs (lncRNAs) that are expressed throughout the cell and fulfill a wide variety of regulatory roles at almost every stage of gene expression. These roles, which encompass sensory, guiding, scaffolding and allosteric capacities, derive from folded modular domains in lncRNAs. In this diverse functional repertoire, we focus on the well-characterized ability for lncRNAs to function as epigenetic modulators. Many lncRNAs bind to chromatin-modifying proteins and recruit their catalytic activity to specific sites in the genome, thereby modulating chromatin states and impacting gene expression. Considering this regulatory potential in combination with the abundance of lncRNAs suggests that lncRNAs may be part of a broad epigenetic regulatory network

    'Earth eaters': Ancient and modern perspectives on human geophagy.

    No full text

    Biological mechanisms of gold nanoparticle radiosensitization

    No full text

    “Earth Eaters”: Ancient and Modern Perspectives on Human Geophagy

    No full text
    corecore