251 research outputs found
A Quantum Scattering Interferometer
The collision of two ultra-cold atoms results in a quantum-mechanical
superposition of two outcomes: each atom continues without scattering and each
atom scatters as a spherically outgoing wave with an s-wave phase shift. The
magnitude of the s-wave phase shift depends very sensitively on the interaction
between the atoms. Quantum scattering and the underlying phase shifts are
vitally important in many areas of contemporary atomic physics, including
Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic
clocks, and magnetically-tuned Feshbach resonances. Precise measurements of
quantum scattering phase shifts have not been possible until now because, in
scattering experiments, the number of scattered atoms depends on the s-wave
phase shifts as well as the atomic density, which cannot be measured precisely.
Here we demonstrate a fundamentally new type of scattering experiment that
interferometrically detects the quantum scattering phase shifts of individual
atoms. By performing an atomic clock measurement using only the scattered part
of each atom, we directly and precisely measure the difference of the s-wave
phase shifts for the two clock states in a density independent manner. Our
method will give the most direct and precise measurements of ultracold
atom-atom interactions and will place stringent limits on the time variations
of fundamental constants.Comment: Corrected formatting and typo
Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3
Background:
Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described.
Results:
Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates.
Conclusion:
We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution
When Flexibility Is Stable: Implicit Long-Term Shaping of Olfactory Preferences
Preferences are traditionally assumed to be stable. However, empirical evidence such as preference modulation following choices calls this assumption into question. The evolution of such postchoice preference over long time spans, even when choices have been explicitly forgotten, has so far not been studied. In two experiments, we investigated this question by using a variant of the free choice paradigm: In a first session, participants evaluated the pleasantness of a number of odors. We then formed pairs of similarly rated odors, and asked participants to choose their favorite, for each pair. Participants were then presented with all odors again, and asked for another pleasantness rating. In a second session 1 week later, a third pleasantness rating was obtained, and participants were again asked to choose between the same options. Results suggested postchoice preference modulation immediately and 1 week after choice for both chosen and rejected options, even when choices were not explicitly remembered. A third experiment, using another paradigm, confirmed that choice can have a modulatory impact on preferences, and that this modulation can be long-lasting. Taken together, these findings suggest that although preferences appear to be flexible because they are modulated by choices, this modulation also appears to be stable over time and even without explicit recollection of the choice. These results bring a new argument to the idea that postchoice preference modulation could rely on implicit mechanisms, and are consistent with the recent proposal that cognitive dissonance reduction could to some extent be implicit
Immunology Taught by Bacteria
It has been proposed that the innate immune system might discriminate living and virulent pathogens from dead or harmless microbes, but the molecular mechanisms by which this discrimination could occur remain unclear. Although studies of model antigens and adjuvants have illuminated important principles underlying immune responses, the specific immune responses made to living, virulent pathogens can only be discovered by studies of the living, virulent pathogens themselves.
Here, I review what one particular bacterium, Legionella pneumophila, has taught us about the innate immune response. Pathogens differ greatly in the mechanisms they use to invade, replicate within, and transmit among their hosts. However, a theme that emerges is that the pathogenic activities sensed by host cells are conserved among multiple pathogenic bacteria.
Thus, immunology taught by L. pneumophila may lead to a more general understanding of the host response to infection
Risk Factors for Posttraumatic Stress Disorder Among Deployed US Male Marines
<p>Abstract</p> <p>Background</p> <p>Combat exposure has been reported as one of the strongest risk factors for postdeployment posttraumatic stress disorder (PTSD) among military service members. Determining the impact of specific deployment-related exposures on the risk of developing PTSD has not been fully explored. Our study objective was to explore the relationship between specific combat exposures and other life experiences with postdeployment PTSD.</p> <p>Methods</p> <p>This study consisted of male Marines who completed a Recruit Assessment Program (RAP) survey during recruit training at the Marine Corps Recruit Depot in San Diego, California as well as a follow-up survey several years after recruit training. Study participants included those Marines who deployed to the current operations in Iraq or Afghanistan between the baseline and follow-up surveys. Multivariable logistic regression was performed to determine which significant exposures and experiences were associated with postdeployment PTSD.</p> <p>Results</p> <p>Of the 706 study participants, 10.8% screened positive for postdeployment PTSD. Those who reported feeling in great danger of death (odds ratio [OR] = 4.63, 95% confidence interval [CI]: 2.46-8.73), were shot or seriously injured (OR = 3.51, 95% CI: 1.58-7.77), saw someone wounded or killed (OR = 2.47, 95% CI: 1.08-5.67), and baseline (before recruit training) prior violence exposures (OR = 2.99, 95% CI: 1.46-6.10) were at increased odds for reporting PTSD symptoms. Number of deployments, number of close friends or relatives reported at follow-up, and enlisted pay grade were also significantly associated with postdeployment PTSD.</p> <p>Conclusions</p> <p>Combat exposures, specifically the threat of death, serious injury, and witnessing injury or death are significant risk factors for screening positive for postdeployment PTSD among male Marines as well as violence exposures prior to entering the Marine Corps, which are independent of future combat exposures. A thorough history of lifetime violence exposures should be pursued when considering a clinical diagnosis of PTSD.</p
Genetic variation in Wnt/β-catenin and ER signalling pathways in female and male elite dancers and its associations with low bone mineral density: a cross-section and longitudinal study.
The association of genetic polymorphisms with low bone mineral density in elite athletes have not been considered previously. The present study found that bone mass phenotypes in elite and pre-elite dancers are related to genetic variants at the Wnt/β-catenin and ER pathways. Some athletes (e.g. gymnasts, dancers, swimmers) are at increased risk for low bone mineral density (BMD) which, if untreated, can lead to osteoporosis. To investigate the association of genetic polymorphisms in the oestrogen receptor (ER) and the Wnt/β-catenin signalling pathways with low BMD in elite and pre-elite dancers (impact sport athletes). The study included three phases: (1) 151 elite and pre-elite dancers were screened for the presence of low BMD and traditional osteoporosis risk factors (low body weight, menstrual disturbances, low energy availability); (2) a genetic association study was conducted in 151 elite and pre-elite dancers and age- and sex- controls; (3) serum sclerostin was measured in 101 pre-elite dancers and age- and sex-matched controls within a 3-year period. Eighty dancers revealed low BMD: 56.3% had at least one traditional osteoporosis risk factor, whereas 28.6% did not display any risk factor (37.2% revealed traditional osteoporosis risk factors, but had normal BMD). Body weight, menstrual disturbances and energy availability did not fully predict bone mass acquisition. Instead, genetic polymorphisms in the ER and Wnt/β-catenin pathways were found to be risk factors for low BMD in elite dancers. Sclerostin was significantly increased in dancers compared to controls during the 3-year follow-up (p < 0.05)
Identification of Estrogen Receptor Dimer Selective Ligands Reveals Growth-Inhibitory Effects on Cells That Co-Express ERα and ERβ
Estrogens play essential roles in the progression of mammary and prostatic diseases. The transcriptional effects of estrogens are transduced by two estrogen receptors, ERα and ERβ, which elicit opposing roles in regulating proliferation: ERα is proliferative while ERβ is anti-proliferative. Exogenous expression of ERβ in ERα-positive cancer cell lines inhibits cell proliferation in response to estrogen and reduces xenografted tumor growth in vivo, suggesting that ERβ might oppose ERα's proliferative effects via formation of ERα/β heterodimers. Despite biochemical and cellular evidence of ERα/β heterodimer formation in cells co-expressing both receptors, the biological roles of the ERα/β heterodimer remain to be elucidated. Here we report the identification of two phytoestrogens that selectively activate ERα/β heterodimers at specific concentrations using a cell-based, two-step high throughput small molecule screen for ER transcriptional activity and ER dimer selectivity. Using ERα/β heterodimer-selective ligands at defined concentrations, we demonstrate that ERα/β heterodimers are growth inhibitory in breast and prostate cells which co-express the two ER isoforms. Furthermore, using Automated Quantitative Analysis (AQUA) to examine nuclear expression of ERα and ERβ in human breast tissue microarrays, we demonstrate that ERα and ERβ are co-expressed in the same cells in breast tumors. The co-expression of ERα and ERβ in the same cells supports the possibility of ERα/β heterodimer formation at physio- and pathological conditions, further suggesting that targeting ERα/β heterodimers might be a novel therapeutic approach to the treatment of cancers which co-express ERα and ERβ
- …