83 research outputs found

    Seroepidemiology of Human Polyomaviruses

    Get PDF
    In addition to the previously characterized viruses BK and JC, three new human polyomaviruses (Pys) have been recently identified: KIV, WUV, and Merkel Cell Py (MCV). Using an ELISA employing recombinant VP1 capsid proteins, we have determined the seroprevalence of KIV, WUV, and MCV, along with BKV and JCV, and the monkey viruses SV40 and LPV. Soluble VP1 proteins were used to assess crossreactivity between viruses. We found the seroprevalence (+/− 1%) in healthy adult blood donors (1501) was SV40 (9%), BKV (82%), JCV (39%), LPV (15%), KIV (55%), WUV (69%), MCV strain 350 (25%), and MCV strain 339 (42%). Competition assays detected no sero-crossreactivity between the VP1 proteins of LPV or MCV or between WUV and KIV. There was considerable sero-crossreactivity between SV40 and BKV, and to a lesser extent, between SV40 and JCV VP1 proteins. After correcting for crossreactivity, the SV40 seroprevalence was ∼2%. The seroprevalence in children under 21 years of age (n = 721) for all Pys was similar to that of the adult population, suggesting that primary exposure to these viruses likely occurs in childhood

    Quantitation of Human Seroresponsiveness to Merkel Cell Polyomavirus

    Get PDF
    Merkel cell carcinoma (MCC) is a relatively uncommon but highly lethal form of skin cancer. A majority of MCC tumors carry DNA sequences derived from a newly identified virus called Merkel cell polyomavirus (MCV or MCPyV), a candidate etiologic agent underlying the development of MCC. To further investigate the role of MCV infection in the development of MCC, we developed a reporter vector-based neutralization assay to quantitate MCV-specific serum antibody responses in human subjects. Our results showed that 21 MCC patients whose tumors harbored MCV DNA all displayed vigorous MCV-specific antibody responses. Although 88% (42/48) of adult subjects without MCC were MCV seropositive, the geometric mean titer of the control group was 59-fold lower than the MCC patient group (p<0.0001). Only 4% (2/48) of control subjects displayed neutralizing titers greater than the mean titer of the MCV-positive MCC patient population. MCC tumors were found not to express detectable amounts of MCV VP1 capsid protein, suggesting that the strong humoral responses observed in MCC patients were primed by an unusually immunogenic MCV infection, and not by viral antigen expressed by the MCC tumor itself. The occurrence of highly immunogenic MCV infection in MCC patients is unlikely to reflect a failure to control polyomavirus infections in general, as seroreactivity to BK polyomavirus was similar among MCC patients and control subjects. The results support the concept that MCV infection is a causative factor in the development of most cases of MCC. Although MCC tumorigenesis can evidently proceed in the face of effective MCV-specific antibody responses, a small pilot animal immunization study revealed that a candidate vaccine based on MCV virus-like particles (VLPs) elicits antibody responses that robustly neutralize MCV reporter vectors in vitro. This suggests that a VLP-based vaccine could be effective for preventing the initial establishment of MCV infection

    Enterovirus 71 3C Protease Cleaves a Novel Target CstF-64 and Inhibits Cellular Polyadenylation

    Get PDF
    Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell–virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3Cpro) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3′ pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3Cpro. CstF-64 was cleaved in vitro by 3Cpro but neither by mutant 3Cpro (in which the catalytic site was inactivated) nor by another EV71 protease 2Apro. Serial mutagenesis was performed in CstF-64, revealing that the 3Cpro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3′-end pre-mRNA processing and polyadenylation in 3Cpro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3Cpro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA

    Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intracerebral hemorrhage (ICH) remains a serious clinical problem lacking effective treatment. Urocortin (UCN), a novel anti-inflammatory neuropeptide, protects injured cardiomyocytes and dopaminergic neurons. Our preliminary studies indicate UCN alleviates ICH-induced brain injury when administered intracerebroventricularly (ICV). The present study examines the therapeutic effect of UCN on ICH-induced neurological deficits and neuroinflammation when administered by the more convenient intraperitoneal (i.p.) route.</p> <p>Methods</p> <p>ICH was induced in male Sprague-Dawley rats by intrastriatal infusion of bacterial collagenase VII-S or autologous blood. UCN (2.5 or 25 μg/kg) was administered i.p. at 60 minutes post-ICH. Penetration of i.p. administered fluorescently labeled UCN into the striatum was examined by fluorescence microscopy. Neurological deficits were evaluated by modified neurological severity score (mNSS). Brain edema was assessed using the dry/wet method. Blood-brain barrier (BBB) disruption was assessed using the Evans blue assay. Hemorrhagic volume and lesion volume were assessed by Drabkin's method and morphometric assay, respectively. Pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) expression was evaluated by enzyme-linked immunosorbent assay (ELISA). Microglial activation and neuronal loss were evaluated by immunohistochemistry.</p> <p>Results</p> <p>Administration of UCN reduced neurological deficits from 1 to 7 days post-ICH. Surprisingly, although a higher dose (25 μg/kg, i.p.) also reduced the functional deficits associated with ICH, it is significantly less effective than the lower dose (2.5 μg/kg, i.p.). Beneficial results with the low dose of UCN included a reduction in neurological deficits from 1 to 7 days post-ICH, as well as a reduction in brain edema, BBB disruption, lesion volume, microglial activation and neuronal loss 3 days post-ICH, and suppression of TNF-α, IL-1β, and IL-6 production 1, 3 and 7 days post-ICH.</p> <p>Conclusion</p> <p>Systemic post-ICH treatment with UCN reduces striatal injury and neurological deficits, likely via suppression of microglial activation and inflammatory cytokine production. The low dose of UCN necessary and the clinically amenable peripheral route make UCN a potential candidate for development into a clinical treatment regimen.</p

    JC Virus Small t Antigen Binds Phosphatase PP2A and Rb Family Proteins and Is Required for Efficient Viral DNA Replication Activity

    Get PDF
    BACKGROUND: The human polyomavirus, JC virus (JCV) produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg) and three T' proteins, but little is known about small tumor antigen (tAg) functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS: We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A), and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS: JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions

    Distinct Merkel Cell Polyomavirus Molecular Features in Tumour and Non Tumour Specimens from Patients with Merkel Cell Carcinoma

    Get PDF
    Merkel Cell Polyomavirus (MCPyV) is associated with Merkel Cell carcinoma (MCC), a rare, aggressive skin cancer with neuroendocrine features. The causal role of MCPyV is highly suggested by monoclonal integration of its genome and expression of the viral large T (LT) antigen in MCC cells. We investigated and characterized MCPyV molecular features in MCC, respiratory, urine and blood samples from 33 patients by quantitative PCR, sequencing and detection of integrated viral DNA. We examined associations between either MCPyV viral load in primary MCC or MCPyV DNAemia and survival. Results were interpreted with respect to the viral molecular signature in each compartment. Patients with MCC containing more than 1 viral genome copy per cell had a longer period in complete remission than patients with less than 1 copy per cell (34 vs 10 months, P = 0.037). Peripheral blood mononuclear cells (PBMC) contained MCPyV more frequently in patients sampled with disease than in patients in complete remission (60% vs 11%, P = 0.00083). Moreover, the detection of MCPyV in at least one PBMC sample during follow-up was associated with a shorter overall survival (P = 0.003). Sequencing of viral DNA from MCC and non MCC samples characterized common single nucleotide polymorphisms defining 8 patient specific strains. However, specific molecular signatures truncating MCPyV LT were observed in 8/12 MCC cases but not in respiratory and urinary samples from 15 patients. New integration sites were identified in 4 MCC cases. Finally, mutated-integrated forms of MCPyV were detected in PBMC of two patients with disseminated MCC disease, indicating circulation of metastatic cells. We conclude that MCPyV molecular features in primary MCC tumour and PBMC may help to predict the course of the disease

    Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species

    Get PDF
    As global biodiversity declines, biodiversity and conservation have become ever more important research topics. Research in chemical ecology for conservation purposes has not adapted to address this need. During the last 10-15 years, only a few insect pheromones have been developed for biodiversity and conservation studies, including the identification and application of pheromones specifically for population monitoring. These investigations, supplemented with our knowledge from decades of studying pest insects, demonstrate that monitoring with pheromones and other semiochemicals can be applied widely for conservation of rare and threatened insects. Here, I summarize ongoing conservation research, and outline potential applications of chemical ecology and pheromone-based monitoring to studies of insect biodiversity and conservation research. Such applications include monitoring of insect population dynamics and distribution changes, including delineation of current ranges, the tracking of range expansions and contractions, and determination of their underlying causes. Sensitive and selective monitoring systems can further elucidate the importance of insect dispersal and landscape movements for conservation. Pheromone-based monitoring of indicator species will also be useful in identifying biodiversity hotspots, and in characterizing general changes in biodiversity in response to landscape, climatic, or other environmental changes

    Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species

    Get PDF
    corecore