49 research outputs found

    Dynamism in the solar core

    Full text link
    Recent results of a mixed shell model heated asymmetrically by transient increases in nuclear burning indicate the transient generation of small hot spots inside the Sun somewhere between 0.1 and 0.2 solar radii. These hot bubbles are followed by a nonlinear differential equation system with finite amplitude non-homologous perturbations which is solved in a solar model. Our results show the possibility of a direct connection between the dynamic phenomena of the solar core and the atmospheric activity. Namely, an initial heating about DQ_0 ~ 10^{31}-10^{37} ergs can be enough for a bubble to reach the outer convective zone. Our calculations show that a hot bubble can arrive into subphotospheric regions with DQ_final ~ 10^{28} - 10^{34} ergs with a high speed, up to 10 km s-1, approaching the local sound speed. We point out that the developing sonic boom transforms the shock front into accelerated particle beam injected upwards into the top of loop carried out by the hot bubble above its forefront traveling from the solar interior. As a result, a new perspective arises to explain flare energetics. We show that the particle beams generated by energetic deep-origin hot bubbles in the subphotospheric layers have masses, energies, and chemical compositions in the observed range of solar chromospheric and coronal flares. It is shown how the emergence of a hot bubble into subphotospheric regions offers a natural mechanism that can generate both the eruption leading to the flare and the observed coronal magnetic topology for reconnection. We show a list of long-standing problems of solar physics that our model explains. We present some predictions for observations, some of which are planned to be realized in the near future.Comment: 44 pages, 20 figure

    Response of the Cutworm Spodoptera litura to Sesame Leaves or Crude Extracts in Diet

    Get PDF
    The effects of extracts of sesame, Sesamum indicum L. (Liamiales: Pedaliaceae), and whole leaves of some selected cultivars of sesame were tested using a natural host Spodoptera litura (F.) (Lepidoptera: Noctuidae). Indices taken using the immature stages include; diet utilization, growth and development and induction of detoxification enzymes. The results indicate that S. litura generally selects its food amongst cultivars within 6 hours after food presentation. Growth and development of the insect is controlled also by plant acceptability and quality. Although all the cultivars tested significantly limit insect growth and development the variety 56S-radiatum did not allow a complete life cycle as pupation from first instar stage was 0%. Generally the crucial period for immature S. litura was the larval period, especially the first two instars where the weight of an insect fed on an experimental diet was three times lower than that of a control diet. The larval developmental period was greater than 40 days as compared to 17 days for insects fed a control diet. S. litura also had lowered efficiency in utilizing ingested food, from a low of 13% in a sesame cultivar to 45% in the control diet. The key detoxification enzyme was a glutathione s-transferase that was confirmed by a 6-fold increase between S. litura fed a plant cultivar vs. a control diet towards the substrate 1,2-dichloro-4-nitrobenzene. First and second instars of S. litura have a relatively reduced detoxification of enzymes in response to plant cultivar diets leading to low survival. A 3% v/w crude extract of the cultivars increased enzyme induction towards all the tested substrates

    The conundrum of iron in multiple sclerosis – time for an individualised approach

    Full text link

    Not Available

    No full text
    Not AvailablePorcine epidemic diarrhea virus (PEDV) is an economically devastating enteric disease in the swine industry. The virus infects pigs of all ages, but it cause severe clinical disease in neonatal suckling pigs with up to 100% mortality. Currently, available vaccines are not completely effective and feedback methods utilizing PEDV infected material has variable success in preventing reinfection. Comprehensive information on the levels and duration of effector/memory IgA and IgG antibody secreting B cell response in the intestines and lymphoid organs of PEDV-infected sows, and their association with specific antibody levels in clinical samples such as plasma, oral fluid, and feces is important. Therefore, our goal in this study was to quantify PEDV specific IgA and IgG B cell responses in sows at approximately 1 and 6 months post-infection in commercial swine herds, including parity one and higher sows. Our data indicated that evaluation of both PEDV specific IgA and IgG antibody levels in the plasma and oral fluid (but not feces) samples is beneficial in disease diagnosis. PEDV specific B cell response in the intestine and spleen of infected sows decline by 6 months, and this associates with specific antibody levels in the plasma and oral fluid samples; but the virus neutralization titers in plasma remains high beyond 6 months post-infection. In conclusion, in sows infected with PEDV the presence of effector/memory B cell response and strong virus neutralization titers in plasma up to 6 months post-infection, suggests their potential to protect sows from reinfection and provide maternal immunity to neonates, but challenge studies are required to confirm such responses.Not Availabl
    corecore