26 research outputs found

    Genetic Deletion of a Single Immunodominant T-cell Response Confers Susceptibility to Virus-induced Demyelination

    Get PDF
    An important question in neuropathology involves determining the antigens that are targeted during demyelinating disease. Viral infection of the central nervous system (CNS) leads to T-cell responses that can be protective as well as pathogenic. In the Theiler’s murine encephalomyelitis virus (TMEV) model of demyelination it is known that the immune response to the viral capsid protein 2 (VP2) is critical for disease pathogenesis. This study shows that expressing the whole viral capsid VP2 or the minimal CD8-specific peptide VP2(121-130) as “self” leads to a loss of VP2-specific immune responses. Loss of responsiveness is caused by T cell-specific tolerance, as VP2-specific antibodies are generated in response to infection. More importantly, these mice lose the CD8 T-cell response to the immunodominant peptide VP2(121-130), which is critical for the development of demyelinating disease. The transgenic mice fail to clear the infection and develop chronic demyelinating disease in the spinal cord white matter. These findings demonstrate that T-cell responses can be removed by transgenic expression and that lack of responsiveness alters viral clearance and CNS pathology. This model will be important for understanding the mechanisms involved in antigen-specific T-cell deletion and the contribution of this response to CNS pathology

    Human Placental-Specific Epipolymorphism and its Association with Adverse Pregnancy Outcomes

    Get PDF
    Interindividual variation in DNA-methylation level is widespread in the human genome, despite its critical role in regulating gene expression. The nature of this variation, including its tissue-specific nature, and the role it may play in human phenotypic variation and disease is still poorly characterized. The placenta plays a critical role in regulating fetal growth and development in ways that have lifelong effects on health. To identify genes with a high degree of interindividual DNA methylation variation in the human placenta, we surveyed the human genome using the Illumina GoldenGate Methylation Cancer panel targeting 1505 CpG sites of 807 genes. While many sites show a continuous pattern of methylation levels, WNT2, TUSC3 and EPHB4 were identified to have a polymorphic “on-or-off” pattern of DNA methylation variation at their promoter region which was confirmed by pyrosequencing. Methylation of these genes can be found in 7%–25% of over 100 placentas tested. The methylation state at the promoter of these genes is concordant with mRNA allelic expression. In three informative cases TUSC3 was observed to be methylated on the maternal allele, and it is thus possible this represents a polymorphically imprinted gene. Furthermore, TUSC3 promoter methylation showed evidence for association with preeclampsia. A biological significance of these methylation allelic polymorphisms (MAPs) to human placental diversity is further implied by their placental specificity and absence in mouse. An extended study of blood suggests that MAPs may also be found in other tissues, implicating their utility for tissue-specific association with complex disorders. The identification of such “epipolymorphism” in other tissues and their use in association studies, should improve our understanding of interindividual phenotypic variability and complex disease susceptibility

    Rac-dependent trans-endocytosis of ephrinBs regulates Eph-ephrin contact repulsion

    No full text
    Eph receptor-ephrin signals are important for controlling repulsive and attractive cell movements during tissue patterning in embryonic development. However, the dynamic cellular responses to these signals at cell-cell contact sites are poorly understood. To examine these events we have used cell microinjection to express EphB4 and ephrinB2 in adjacent Swiss 3T3 fibroblasts and have studied the interaction of the injected cells using time-lapse microscopy. We show that Eph receptors are locally activated wherever neighbouring cells make contact. This triggers dynamic, Rac-regulated membrane ruffles at the Eph-ephrin contact sites. Subsequently, the receptor and ligand cells retract from one another, concomitantly with the endocytosis of the activated Eph receptors and their bound, full-length ephrinB ligands. Both the internalization of the receptor-ligand complexes and the subsequent cell retraction events are dependent on actin polymerization, which in turn is dependent on Rac signalling within the receptor-expressing cells. Similar events occur in primary human endothelial cells. Our findings suggest a novel mechanism for cell repulsion, in which the contact between Eph-expressing and ephrin-expressing cells is destabilized by the localized phagocytosis of the ligand-expressing cell plasma membrane by the receptor-expressing cell

    Substituted Judgment: The Limitations of Autonomy in Surrogate Decision Making

    No full text
    Substituted judgment is often invoked as a guide for decision making when a patient lacks decision making capacity and has no advance directive. Using substituted judgment, doctors and family members try to make the decision that the patient would have made if he or she were able to make decisions. However, empirical evidence suggests that the moral basis for substituted judgment is unsound. In spite of this, many physicians and bioethicists continue to rely on the notion of substituted judgment. Given compelling evidence that the use of substituted judgment has insurmountable flaws, other approaches should be considered. One approach provides limits on decision making using a best interest standard based on community norms. A second approach uses narrative techniques and focuses on each patient’s dignity and individuality rather than his or her autonomy
    corecore