14 research outputs found
Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat
Aims/hypothesis Impaired intestinal barrier function is observed in type I diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading to type I diabetes. Since a hydrolysed casein (HC) diet prevents autoimmune diabetes onset in diabetes-prone (DP)-BioBreeding (BB) rats, we studied the role of the HC diet on intestinal barrier function and, therefore, prevention of autoimmune diabetes onset in this animal model. Methods DP-BB rats were fed the HC diet from weaning onwards and monitored for autoimmune diabetes development. Intestinal permeability was assessed in vivo by lactulose mannitol test and ex vivo by measuring trans-epithelial electrical resistance (TEER). Levels of serum zonulin, a physiological tight junction modulator, were measured by ELISA. heal mRNA expression of Myo9b, Cldn1, Cldn2 and Ocln (which encode the tight junction-related proteins myosin IXb, claudin-1, claudin-2 and occludin) and Il-10, Tgf-beta (also known as Il10 and Tgfb, respectively, which encode regulatory cytokines) was analysed by quantitative PCR. Results The HC diet reduced autoimmune diabetes by 50% in DP-BB rats. In DP-BB rats, prediabetic gut permeability negatively correlated with the moment of autoimmune diabetes onset. The improved intestinal barrier function that was induced by HC diet in DP-BB rats was visualised by decreasing lactulose:mannitol ratio, decreasing serum zonulin levels and increasing ileal TEER. The HC diet modified ileal mRNA expression of Myo9b, and Cldn1 and Cldn2, but left Ocln expression unaltered. Conclusions/interpretation Improved intestinal barrier function might be an important intermediate in the prevention of autoimmune diabetes by the HC diet in DP-BB rats. Effects on tight junctions, ileal cytokines and zonulin production might be important mechanisms for this effect
OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt
The present OSS mission continues a long and bright tradition by associating
the communities of fundamental physics and planetary sciences in a single
mission with ambitious goals in both domains. OSS is an M-class mission to
explore the Neptune system almost half a century after flyby of the Voyager 2
spacecraft. Several discoveries were made by Voyager 2, including the Great
Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed
the dynamics of Neptune's atmosphere and found four rings and evidence of ring
arcs above Neptune. Benefiting from a greatly improved instrumentation, it will
result in a striking advance in the study of the farthest planet of the Solar
System. Furthermore, OSS will provide a unique opportunity to visit a selected
Kuiper Belt object subsequent to the passage of the Neptunian system. It will
consolidate the hypothesis of the origin of Triton as a KBO captured by
Neptune, and improve our knowledge on the formation of the Solar system. The
probe will embark instruments allowing precise tracking of the probe during
cruise. It allows to perform the best controlled experiment for testing, in
deep space, the General Relativity, on which is based all the models of Solar
system formation. OSS is proposed as an international cooperation between ESA
and NASA, giving the capability for ESA to launch an M-class mission towards
the farthest planet of the Solar system, and to a Kuiper Belt object. The
proposed mission profile would allow to deliver a 500 kg class spacecraft. The
design of the probe is mainly constrained by the deep space gravity test in
order to minimise the perturbation of the accelerometer measurement.Comment: 43 pages, 10 figures, Accepted to Experimental Astronomy, Special
Issue Cosmic Vision. Revision according to reviewers comment
Gliadin Induces Neutrophil Migration via Engagement of the Formyl Peptide Receptor, FPR1
Gliadin, the immunogenic component within gluten and trigger of celiac disease, is known to induce the production of Interleukin-8, a potent neutrophil-activating and chemoattractant chemokine. We sought to study the involvement of neutrophils in the early immunological changes following gliadin exposure
Letter. High rates of sea-level rise during the last interglacial period
The last interglacial period, Marine Isotope Stage (MIS) 5e, was characterized by global mean surface temperatures that were at least 2 °C warmer than present. Mean sea level stood 4â6 m higher than modern sea level, with an important contribution from a reduction of the Greenland ice sheet1. Although some fossil reef data indicate sea-level fluctuations of up to 10 m around the mean, so far it has not been possible to constrain the duration and rates of change of these shorter-term variations. Here, we use a combination of a continuous high-resolution sea-level record, based on the stable oxygen isotopes of planktonic foraminifera from the central Red Sea, and age constraints from coral data to estimate rates of sea-level change during MIS-5e. We find average rates of sea-level rise of 1.6 m per century. As global mean temperatures during MIS-5e were comparable to projections for future climate change under the influence of anthropogenic greenhouse-gas emissions, these observed rates of sea-level change inform the ongoing debate about high versus low rates of sea-level rise in the coming century.<br/