1,784 research outputs found

    The egalitarian effect of search engines

    Full text link
    Search engines have become key media for our scientific, economic, and social activities by enabling people to access information on the Web in spite of its size and complexity. On the down side, search engines bias the traffic of users according to their page-ranking strategies, and some have argued that they create a vicious cycle that amplifies the dominance of established and already popular sites. We show that, contrary to these prior claims and our own intuition, the use of search engines actually has an egalitarian effect. We reconcile theoretical arguments with empirical evidence showing that the combination of retrieval by search engines and search behavior by users mitigates the attraction of popular pages, directing more traffic toward less popular sites, even in comparison to what would be expected from users randomly surfing the Web.Comment: 9 pages, 8 figures, 2 appendices. The final version of this e-print has been published on the Proc. Natl. Acad. Sci. USA 103(34), 12684-12689 (2006), http://www.pnas.org/cgi/content/abstract/103/34/1268

    Prophet Inequalities with Limited Information

    Full text link
    In the classical prophet inequality, a gambler observes a sequence of stochastic rewards V1,...,VnV_1,...,V_n and must decide, for each reward ViV_i, whether to keep it and stop the game or to forfeit the reward forever and reveal the next value ViV_i. The gambler's goal is to obtain a constant fraction of the expected reward that the optimal offline algorithm would get. Recently, prophet inequalities have been generalized to settings where the gambler can choose kk items, and, more generally, where he can choose any independent set in a matroid. However, all the existing algorithms require the gambler to know the distribution from which the rewards V1,...,VnV_1,...,V_n are drawn. The assumption that the gambler knows the distribution from which V1,...,VnV_1,...,V_n are drawn is very strong. Instead, we work with the much simpler assumption that the gambler only knows a few samples from this distribution. We construct the first single-sample prophet inequalities for many settings of interest, whose guarantees all match the best possible asymptotically, \emph{even with full knowledge of the distribution}. Specifically, we provide a novel single-sample algorithm when the gambler can choose any kk elements whose analysis is based on random walks with limited correlation. In addition, we provide a black-box method for converting specific types of solutions to the related \emph{secretary problem} to single-sample prophet inequalities, and apply it to several existing algorithms. Finally, we provide a constant-sample prophet inequality for constant-degree bipartite matchings. We apply these results to design the first posted-price and multi-dimensional auction mechanisms with limited information in settings with asymmetric bidders

    Spectral centrality measures in complex networks

    Full text link
    Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce a large diversification of the roles of the nodes within the network. Several centrality measures have been introduced to rank nodes based on their topological importance within a graph. Here we review and compare centrality measures based on spectral properties of graph matrices. We shall focus on PageRank, eigenvector centrality and the hub/authority scores of HITS. We derive simple relations between the measures and the (in)degree of the nodes, in some limits. We also compare the rankings obtained with different centrality measures.Comment: 11 pages, 10 figures, 5 tables. Final version published in Physical Review

    Modeling self-organization of communication and topology in social networks

    Full text link
    This paper introduces a model of self-organization between communication and topology in social networks, with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, a global loss is inevitable in a system with too many liarsComment: 6 pages 7 figures, Java simulation available at http://cmol.nbi.dk/models/inforew/inforew.htm

    Sequential item pricing for unlimited supply

    Get PDF
    We investigate the extent to which price updates can increase the revenue of a seller with little prior information on demand. We study prior-free revenue maximization for a seller with unlimited supply of n item types facing m myopic buyers present for k < log n days. For the static (k = 1) case, Balcan et al. [2] show that one random item price (the same on each item) yields revenue within a \Theta(log m + log n) factor of optimum and this factor is tight. We define the hereditary maximizers property of buyer valuations (satisfied by any multi-unit or gross substitutes valuation) that is sufficient for a significant improvement of the approximation factor in the dynamic (k > 1) setting. Our main result is a non-increasing, randomized, schedule of k equal item prices with expected revenue within a O((log m + log n) / k) factor of optimum for private valuations with hereditary maximizers. This factor is almost tight: we show that any pricing scheme over k days has a revenue approximation factor of at least (log m + log n) / (3k). We obtain analogous matching lower and upper bounds of \Theta((log n) / k) if all valuations have the same maximum. We expect our upper bound technique to be of broader interest; for example, it can significantly improve the result of Akhlaghpour et al. [1]. We also initiate the study of revenue maximization given allocative externalities (i.e. influences) between buyers with combinatorial valuations. We provide a rather general model of positive influence of others' ownership of items on a buyer's valuation. For affine, submodular externalities and valuations with hereditary maximizers we present an influence-and-exploit (Hartline et al. [13]) marketing strategy based on our algorithm for private valuations. This strategy preserves our approximation factor, despite an affine increase (due to externalities) in the optimum revenue.Comment: 18 pages, 1 figur

    Scale-free network growth by ranking

    Full text link
    Network growth is currently explained through mechanisms that rely on node prestige measures, such as degree or fitness. In many real networks those who create and connect nodes do not know the prestige values of existing nodes, but only their ranking by prestige. We propose a criterion of network growth that explicitly relies on the ranking of the nodes according to any prestige measure, be it topological or not. The resulting network has a scale-free degree distribution when the probability to link a target node is any power law function of its rank, even when one has only partial information of node ranks. Our criterion may explain the frequency and robustness of scale-free degree distributions in real networks, as illustrated by the special case of the Web graph.Comment: 4 pages, 2 figures. We extended the model to account for ranking by arbitrarily distributed fitness. Final version to appear on Physical Review Letter

    Social Ranking Techniques for the Web

    Full text link
    The proliferation of social media has the potential for changing the structure and organization of the web. In the past, scientists have looked at the web as a large connected component to understand how the topology of hyperlinks correlates with the quality of information contained in the page and they proposed techniques to rank information contained in web pages. We argue that information from web pages and network data on social relationships can be combined to create a personalized and socially connected web. In this paper, we look at the web as a composition of two networks, one consisting of information in web pages and the other of personal data shared on social media web sites. Together, they allow us to analyze how social media tunnels the flow of information from person to person and how to use the structure of the social network to rank, deliver, and organize information specifically for each individual user. We validate our social ranking concepts through a ranking experiment conducted on web pages that users shared on Google Buzz and Twitter.Comment: 7 pages, ASONAM 201

    Activity ageing in growing networks

    Get PDF
    We present a model for growing information networks where the ageing of a node depends on the time at which it entered the network and on the last time it was cited. The model is shown to undergo a transition from a small-world to large-world network. The degree distribution may exhibit very different shapes depending on the model parameters, e.g. delta-peaked, exponential or power-law tailed distributions.Comment: 9 pages, 2 figure
    • …
    corecore