32 research outputs found

    Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus

    Get PDF
    Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development

    Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana

    Get PDF
    Funding: UK Natural Environment Research Council (Grant Number(s): NE/L501852/1, NE/P000592/1); Academy of Finland (GrantNumber(s): 267244, 268214, 322980), Ella ja Georg Ehrnroothin Säätiö.Detecting signatures of ecological adaptation in comparative genomics is challenging, but analysing population samples with characterised geographic distributions, such as clinal variation, can help identify genes showing covariation with important ecological variation. Here, we analysed patterns of geographic variation in the cold-adapted species Drosophila montana across phenotypes, genotypes and environmental conditions and tested for signatures of cold adaptation in population genomic divergence. We first derived the climatic variables associated with the geographic distribution of 24 populations across two continents to trace the scale of environmental variation experienced by the species, and measured variation in the cold tolerance of the flies of six populations from different geographic contexts. We then performed pooled whole genome sequencing of these six populations, and used Bayesian methods to identify SNPs where genetic differentiation is associated with both climatic variables and the population phenotypic measurements, while controlling for effects of demography and population structure. The top candidate SNPs were enriched on the X and fourth chromosomes, and they also lay near genes implicated in other studies of cold tolerance and population divergence in this species and its close relatives. We conclude that ecological adaptation has contributed to the divergence of D. montana populations throughout the genome and in particular on the X and fourth chromosomes, which also showed highest interpopulation FST. This study demonstrates that ecological selection can drive genomic divergence at different scales, from candidate genes to chromosome-wide effects.Publisher PDFPeer reviewe

    Ferrocene-Containing Optically Active Liquid-Crystalline Side-Chain Polysiloxanes with Planar Chirality

    No full text
    Optically active liquid-crystalline side-chain polysiloxanes have been prepared by grafting planar chiral ferrocene-based vinyl monomers onto commercially available polyhydrosiloxane. Two ferrocene monomers have been synthesized: a linear-type monomer, which displays a monotropic chiral smectic C (SC*) phase and enantiotropic smectic A (SA) and chiral N (N*) phases, and a laterally branched monomer, which shows an enantiotropic N* phase. X-ray diffraction analysis indicates a monomolecular organization of the monomeric units within the smectic layers. The polymers retain the liquid-crystalline phases of their corresponding monomers. The UV-vis and circular dichroism (CD) spectra are in agreement with the structure of the monomers and polymers. The molar absorption coefficient (ε) and molar circular dichroic absorption coefficient (Δε) values of the polymers are proportional to the number of monomeric units grafted onto them. The absolute configuration of the ferrocene carboxylic acid intermediate, used to synthesize the monomers, has been determined on the basis of CD spectra. The helical twisting power (HTP) of the nematogenic monomer and polymer have been determined in E7, and indicate that such materials could be used as chiral dopants. Finally, this study demonstrates that the nature of chiral phases can be controlled by structural engineering of the organic groups only, with ferrocene acting as the source of chirality. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    The genetic architecture of sexually selected traits in two natural populations of Drosophila montana

    Get PDF
    The work was supported by the National Environment Research Council (grant NE/E015255/1 to MGR and RKB) and the Academy of Finland (project 132619 to AH).We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.PostprintPeer reviewe

    Sound production during agonistic behavior of male Drosophila melanogaster

    No full text
    Male Drosophila fruit flies acquire and defend territories in order to attract females for reproduction. Both, male-directed agonistic behavior and female-directed courtship consist of series of recurrent stereotypical components. Various studies demonstrated the importance of species-specific sound patterns generated by wing vibration as being critical for male courtship success. In this study we analyzed the patterns and importance of sound signals generated during agonistic interactions of male Drosophila melanogaster. In contrast to acoustic courtship signals that consist of sine and pulse patterns and are generated by one extended wing, agonistic signals lack sine-like components and are generally produced by simultaneous movements of both wings. Though intra-pulse oscillation frequencies (carrier frequency) are identical, inter-pulse intervals are twice as long and more variable in aggression signals than in courtship songs, where their precise temporal pattern serves species recognition. Acoustic signals accompany male agonistic interactions over their entire course but occur particularly often after tapping behavior which is a major way to identify the gender of the interaction partner. Since similar wing movements may either be silent or generate sound and wing movements with sound have a greater impact on the subsequent behavior of a receiver, sound producing wing movements seem to be generated intentionally to serve as a specific signal during fruit fly agonistic encounters
    corecore