25 research outputs found

    Predictors of Radiotherapy Induced Bone Injury (RIBI) after stereotactic lung radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to identify clinical and dosimetric factors associated with radiotherapy induced bone injury (RIBI) following stereotactic lung radiotherapy.</p> <p>Methods</p> <p>Inoperable patients with early stage non-small cell lung cancer, treated with SBRT, who received 54 or 60 Gy in 3 fractions, and had a minimum of 6 months follow up were reviewed. Archived treatment plans were retrieved, ribs delineated individually and treatment plans re-computed using heterogeneity correction. Clinical and dosimetric factors were evaluated for their association with rib fracture using logistic regression analysis; a dose-event curve and nomogram were created.</p> <p>Results</p> <p>46 consecutive patients treated between Oct 2004 and Dec 2008 with median follow-up 25 months (m) (range 6 – 51 m) were eligible. 41 fractured ribs were detected in 17 patients; median time to fracture was 21 m (range 7 – 40 m). The mean maximum point dose in non-fractured ribs (n = 1054) was 10.5 Gy ± 10.2 Gy, this was higher in fractured ribs (n = 41) 48.5 Gy ± 24.3 Gy (p < 0.0001). On univariate analysis, age, dose to 0.5 cc of the ribs (D<sub>0.5</sub>), and the volume of the rib receiving at least 25 Gy (V<sub>25</sub>), were significantly associated with RIBI. As D<sub>0.5</sub> and V<sub>25</sub> were cross-correlated (Spearman correlation coefficient: 0.57, p < 0.001), we selected D<sub>0.5</sub> as a representative dose parameter. On multivariate analysis, age (odds ratio: 1.121, 95% CI: 1.04 – 1.21, p = 0.003), female gender (odds ratio: 4.43, 95% CI: 1.68 – 11.68, p = 0.003), and rib D<sub>0.5</sub> (odds ratio: 1.0009, 95% CI: 1.0007 – 1.001, p < 0.0001) were significantly associated with rib fracture.</p> <p>Using D<sub>0.5,</sub> a dose-event curve was constructed estimating risk of fracture from dose at the median follow up of 25 months after treatment. In our cohort, a 50% risk of rib fracture was associated with a D<sub>0.5</sub> of 60 Gy.</p> <p>Conclusions</p> <p>Dosimetric and clinical factors contribute to risk of RIBI and both should be included when modeling risk of toxicity. A nomogram is presented using D<sub>0.5</sub>, age, and female gender to estimate risk of RIBI following SBRT. This requires validation.</p

    Predicting Overall Survival After Stereotactic Ablative Radiation Therapy in Early-Stage Lung Cancer: Development and External Validation of the Amsterdam Prognostic Model

    No full text
    Purpose: A prognostic model for 5-year overall survival (OS), consisting of recursive partitioning analysis (RPA) and a nomogram, was developed for patients with early-stage non-small cell lung cancer (ES-NSCLC) treated with stereotactic ablative radiation therapy (SABR). Methods and Materials: A primary dataset of 703 ES-NSCLC SABR patients was randomly divided into a training (67%) and an internal validation (33%) dataset. In the former group, 21 unique parameters consisting of patient, treatment, and tumor factors were entered into an RPA model to predict OS. Univariate and multivariate models were constructed for RPA-selected factors to evaluate their relationship with OS. A nomogram for OS was constructed based on factors significant in multivariate modeling and validated with calibration plots. Both the RPA and the nomogram were externally validated in independent surgical (n = 193) and SABR (n = 543) datasets. Results: RPA identified 2 distinct risk classes based on tumor diameter, age, World Health Organization performance status (PS) and Charlson comorbidity index. This RPA had moderate discrimination in SABR datasets (c-index range: 0.52-0.60) but was of limited value in the surgical validation cohort. The nomogram predicting OS included smoking history in addition to RPA-identified factors. In contrast to RPA, validation of the nomogram performed well in internal validation (r(2) = 0.97) and external SABR (r(2) = 0.79) and surgical cohorts (r(2) = 0.91). Conclusions: The Amsterdam prognostic model is the first externally validated prognostication tool for OS in ES-NSCLC treated with SABR available to individualize patient decision making. The nomogram retained strong performance across surgical and SABR external validation datasets. RPA performance was poor in surgical patients, suggesting that 2 different distinct patient populations are being treated with these 2 effective modalities. (C) 2015 Elsevier Inc. All rights reserved

    Ion acceleration from the shock front induced by hole boring in ultraintense laser-plasma interactions

    No full text
    Ion-acceleration processes were studied in ultraintense laser plasma interactions for normal incidence irradiation of solid targets. Neutron spectroscopy was used for the purpose of analysis. It was found that the ions are preferentially accelerated radially. Results show that the laser pedestal generates a 10 μm scale length in the coronal plasma with a 3 μm scale-length plasma near the critical density
    corecore