18 research outputs found

    Far-Field Modeling of a Deep-Sea Blowout: Sensitivity Studies of Initial Conditions, Biodegradation, Sedimentation, and Subsurface Dispersant Injection on Surface Slicks and Oil Plume Concentrations

    No full text
    Modeling of large-scale oil transport and fate resulting from deep-sea oil spills is highly complex due to a number of bio-chemo-geophysical interactions, which are often empirically based. Predicting mass-conserved total petroleum hydrocarbon concentrations is thus still a challenge for most oil spill models. In addition, dynamic quantification and visualization of spilled oil concentrations are necessary both for first response and basin-wide impact studies. This chapter presents a new implementation of the Connectivity Modeling System (CMS) oil application that tracks individual multi-fraction oil droplets and estimates oil concentrations and oil mass in a 3D space grid. We used the Deepwater Horizon (DWH) blowout as a case study and performed a sensitivity analysis of several modeling key factors, such as biodegradation, sedimentation, and alternative initial conditions, including droplet size distribution (DSD) corresponding to an untreated and treated live oil from subsurface dispersant injection (SSDI) predicted experimentally under high pressure and by the VDROP-J jet-droplet formation model. This quantitative analysis enabled the reconstruction of a time evolving three-dimensional (3D) oil plume in the ocean interior, the rising and spreading of oil on the ocean surface, and the effect of SSDI in shifting the oil to deeper waters while conserving the mass balance. Our modeling framework and analyses are thus important technical advances for understanding and mitigating deep-sea blowouts

    The Nightingale study: rationale, study design and baseline characteristics of a prospective cohort study on shift work and breast cancer risk among nurses.

    Get PDF
    BACKGROUND: Evidence for the carcinogenicity of shift work in humans is limited because of significant heterogeneity of the results, thus more in-depth research in needed. The Nightingale Study is a nationwide prospective cohort study on occupational exposures and risks of chronic diseases among female nurses and focuses on the potential association between shift work and risk of breast cancer. The study design, methods, and baseline characteristics of the cohort are described. METHODS/DESIGN: The source population for the cohort comprised 18 to 65 year old women who were registered as having completed training to be a nurse in the nationwide register for healthcare professionals in the Netherlands. Eligible women were invited to complete a web-based questionnaire including full job history, a detailed section on all domains of shift work (shift system, cumulative exposure, and shift intensity) and potential confounding factors, and an informed consent form for linkage with national (disease) registries. Women were also asked to donate toenail clippings as a source of DNA for genetic analyses. Between October 6, 2011 and February 1, 2012, 31% of the 192,931 women who were invited to participate completed the questionnaire, yielding a sample size of 59,947 cohort members. The mean age of the participants was 46.9 year (standard deviation 11.0 years). Toenail clippings were provided by 23,439 participants (39%). DISCUSSION: Results from the Nightingale Study will contribute to the scientific evidence of potential shift work-related health risks among nurses and will help develop preventive measures and policy aimed at reducing these risks
    corecore