77 research outputs found
High-throughput bacterial SNP typing identifies distinct clusters of Salmonella Typhi causing typhoid in Nepalese children.
BACKGROUND: Salmonella Typhi (S. Typhi) causes typhoid fever, which remains an important public health issue in many developing countries. Kathmandu, the capital of Nepal, is an area of high incidence and the pediatric population appears to be at high risk of exposure and infection. METHODS: We recently defined the population structure of S. Typhi, using new sequencing technologies to identify nearly 2,000 single nucleotide polymorphisms (SNPs) that can be used as unequivocal phylogenetic markers. Here we have used the GoldenGate (Illumina) platform to simultaneously type 1,500 of these SNPs in 62 S. Typhi isolates causing severe typhoid in children admitted to Patan Hospital in Kathmandu. RESULTS: Eight distinct S. Typhi haplotypes were identified during the 20-month study period, with 68% of isolates belonging to a subclone of the previously defined H58 S. Typhi. This subclone was closely associated with resistance to nalidixic acid, with all isolates from this group demonstrating a resistant phenotype and harbouring the same resistance-associated SNP in GyrA (Phe83). A secondary clone, comprising 19% of isolates, was observed only during the second half of the study. CONCLUSIONS: Our data demonstrate the utility of SNP typing for monitoring bacterial populations over a defined period in a single endemic setting. We provide evidence for genotype introduction and define a nalidixic acid resistant subclone of S. Typhi, which appears to be the dominant cause of severe pediatric typhoid in Kathmandu during the study period
Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe
Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage
High throughput method for analysis of repeat number for 28 phase variable loci of C. jejuni strain NCTC11168
Mutations in simple sequence repeat tracts are a major mechanism of phase variation in several bacterial species including Campylobacter jejuni. Changes in repeat number of tracts located within the reading frame can produce a high frequency of reversible switches in gene expression between ON and OFF states. The genome of C. jejuni strain NCTC11168 contains 29 loci with polyG/polyC tracts of seven or more repeats. This protocol outlines a method for rapidly determining ON/OFF states of these 28 phase-variable loci in a large number of individual colonies. The method combines a series of multiplex PCR assays with a GeneScan assay and automated extraction of tract length, repeat number and expression state. This high throughput, multiplex assay has utility for detecting shifts in phase variation states within and between populations over time and for exploring the effects of phase variation on adaptation to differing selective pressures. An important output of this assay is combinatorial expression states that cannot be determined by other methods. This method can be adapted to analysis of phase variation in other C. jejuni strains and in a diverse range of bacterial species
Identification of nine sequence types of the 16S rRNA genes of Campylobacter jejuni subsp. jejuni isolated from broilers
<p>Abstract</p> <p>Background</p> <p>Campylobacter is the most commonly reported bacterial cause of enteritis in humans in the EU Member States and other industrialized countries. One significant source of infection is broilers and consumption of undercooked broiler meat. <it>Campylobacter jejuni </it>is the <it>Campylobacter </it>sp. predominantly found in infected humans and colonized broilers. Sequence analysis of the 16S rRNA gene is very useful for identification of bacteria to genus and species level. The objectives in this study were to determine the degree of intraspecific variation in the 16S rRNA genes of <it>C. jejuni </it>and <it>C. coli </it>and to determine whether the 16S rRNA sequence types correlated with genotypes generated by PFGE analysis of <it>Sma</it>I restricted genomic DNA of the strains.</p> <p>Methods</p> <p>The 16S rRNA genes of 45 strains of <it>C. jejuni </it>and two <it>C. coli </it>strains isolated from broilers were sequenced and compared with 16S rRNA sequences retrieved from the Ribosomal Database Project or GenBank. The strains were also genotyped by PFGE after digestion with <it>Sma</it>I.</p> <p>Results</p> <p>Sequence analyses of the 16S rRNA genes revealed nine sequence types of the <it>Campylobacter </it>strains and the similarities between the different sequence types were in the range 99.6β99.9%. The number of nucleotide substitutions varied between one and six among the nine 16S rRNA sequence types. One of the nine 16S rRNA sequence profiles was common to 12 of the strains from our study and two of these were identified as <it>Campylobacter coli </it>by PCR/REA. The other 10 strains were identified as <it>Campylobacter jejuni</it>. Five of the nine sequence types were also found among the <it>Campylobacter </it>sequences deposited in GenBank. The three 16S rRNA genes in the analysed strains were identical within each individual strain for all 47 strains.</p> <p>Conclusion</p> <p><it>C. jejuni </it>and <it>C. coli </it>seem to lack polymorphisms in their 16S rRNA gene, but phylogenetic analysis based on 16S rRNA sequences was not always sufficient for differentiation between <it>C. jejuni </it>and <it>C. coli</it>. The strains were grouped in two major clusters according to 16S rRNA, one cluster with only <it>C. jejuni </it>and the other with both <it>C. jejuni </it>and <it>C. coli</it>. Genotyping of the 47 strains by PFGE after digestion with <it>Sma</it>I resulted in 22 subtypes. A potential correlation was found between the <it>Sma</it>I profiles and the 16S rRNA sequences, as a certain <it>Sma</it>I type only appeared in one of the two major phylogenetic groups.</p
Lovastatin Protects against Experimental Plague in Mice
Background: Plague is an ectoparasite-borne deadly infection caused by Yersinia pestis, a bacterium classified among the group A bioterrorism agents. Thousands of deaths are reported every year in some African countries. Tetracyclines and cotrimoxazole are used in the secondary prophylaxis of plague in the case of potential exposure to Y. pestis, but cotrimoxazole-resistant isolates have been reported. There is a need for additional prophylactic measures. We aimed to study the effectiveness of lovastatin, a cholesterol-lowering drug known to alleviate the symptoms of sepsis, for plague prophylaxis in an experimental model. Methodology: Lovastatin dissolved in Endolipide was intraperitoneally administered to mice (20 mg/kg) every day for 6 days prior to a Y. pestis Orientalis biotype challenge. Non-challenged, lovastatin-treated and challenged, untreated mice were also used as control groups in the study. Body weight, physical behavior and death were recorded both prior to infection and for 10 days post-infection. Samples of the blood, lungs and spleen were collected from dead mice for direct microbiological examination, histopathology and culture. The potential antibiotic effect of lovastatin was tested on blood agar plates. Conclusions/Significance: Lovastatin had no in-vitro antibiotic effect against Y. pestis. The difference in the mortality between control mice (11/15; 73.5%) and lovastatin-treated mice (3/15; 20%) was significant (P,0.004; Mantel-Haensze
Transcriptome Analysis of Neisseria meningitidis in Human Whole Blood and Mutagenesis Studies Identify Virulence Factors Involved in Blood Survival
During infection Neisseria meningitidis (Nm) encounters multiple
environments within the host, which makes rapid adaptation a crucial factor for
meningococcal survival. Despite the importance of invasion into the bloodstream
in the meningococcal disease process, little is known about how Nm adapts to
permit survival and growth in blood. To address this, we performed a time-course
transcriptome analysis using an ex vivo model of human whole
blood infection. We observed that Nm alters the expression of β30% of
ORFs of the genome and major dynamic changes were observed in the expression of
transcriptional regulators, transport and binding proteins, energy metabolism,
and surface-exposed virulence factors. In particular, we found that the gene
encoding the regulator Fur, as well as all genes encoding iron uptake systems,
were significantly up-regulated. Analysis of regulated genes encoding for
surface-exposed proteins involved in Nm pathogenesis allowed us to better
understand mechanisms used to circumvent host defenses. During blood infection,
Nm activates genes encoding for the factor H binding proteins, fHbp and NspA,
genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as
several less characterized surface-exposed proteins that might have a role in
blood survival. Through mutagenesis studies of a subset of up-regulated genes we
were able to identify new proteins important for survival in human blood and
also to identify additional roles of previously known virulence factors in
aiding survival in blood. Nm mutant strains lacking the genes encoding the
hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and
NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate
permease LctP were sensitive to killing by human blood. This increased knowledge
of how Nm responds to adaptation in blood could also be helpful to develop
diagnostic and therapeutic strategies to control the devastating disease cause
by this microorganism
Ultrafast Evolution and Loss of CRISPRs Following a Host Shift in a Novel Wildlife Pathogen, Mycoplasma gallisepticum
Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG) is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus), a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only βΌ2% of ancestral poultry strains and a nucleotide substitution rate of 0.8β1.2Γ10β5 per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007) House Finch MG strains retain only βΌ50% of the CRISPR repertoire founding (1994β95) strains and have lost the CRISPRβassociated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs
Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings.
An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.This work was supported by the Wellcome Trust. We would like to thank the members of the Pathogen Informatics Team and the core sequencing teams at the Wellcome Trust Sanger Institute (Cambridge, UK). We are grateful to D. Harris for work in managing the sequence data
The Salmonella enterica Pan-genome
Salmonella enterica is divided into four subspecies containing a large number of different serovars, several of which are important zoonotic pathogens and some show a high degree of host specificity or host preference. We compare 45 sequenced S. enterica genomes that are publicly available (22 complete and 23 draft genome sequences). Of these, 35 were found to be of sufficiently good quality to allow a detailed analysis, along with two Escherichia coli strains (K-12 substr. DH10B and the avian pathogenic E. coli (APEC O1) strain). All genomes were subjected to standardized gene finding, and the core and pan-genome of Salmonella were estimated to be around 2,800 and 10,000 gene families, respectively. The constructed pan-genomic dendrograms suggest that gene content is often, but not uniformly correlated to serotype. Any given Salmonella strain has a large stable core, whilst there is an abundance of accessory genes, including the Salmonella pathogenicity islands (SPIs), transposable elements, phages, and plasmid DNA. We visualize conservation in the genomes in relation to chromosomal location and DNA structural features and find that variation in gene content is localized in a selection of variable genomic regions or islands. These include the SPIs but also encompass phage insertion sites and transposable elements. The islands were typically well conserved in several, but not all, isolatesβa difference which may have implications in, e.g., host specificity
The Sudden Dominance of blaCTXβM Harbouring Plasmids in Shigella spp. Circulating in Southern Vietnam
Shigellosis is a disease caused by bacteria belonging to Shigella spp. and is a leading cause of bacterial gastrointestinal infections in infants in unindustrialized countries. The Shigellae are dynamic and capable of rapid change when placed under selective pressure in a human population. Extended spectrum beta lactamases (ESBLs) are enzymes capable of degrading cephalosporins (a group of antimicrobial agents) and the genes that encode them are common in pathogenic E. coli and other related organisms in industrialized countries. In southern Vietnam, we have isolated multiple cephalosporin-resistant Shigella that express ESBLs. Furthermore, over two years these strains have replaced strains isolated from patients with shigellosis that cannot express ESBLs. Our work describes the genes responsible for this characteristic and we investigate one of the elements carrying one of these genes. These finding have implications for treatment of shigellosis and support the growing necessity for vaccine development. Our findings also may be pertinent for other countries undergoing a similar economic transition to Vietnam's and the corresponding effect on bacterial populations
- β¦