17 research outputs found

    Alterations in Mesenteric Lymph Node T Cell Phenotype and Cytokine Secretion are Associated with Changes in Thymocyte Phenotype after LP-BM5 Retrovirus Infection

    Get PDF
    In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7+ cells and an increase in the percentage of IL-16+ cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-Υ secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-Υ secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4+CD8- or CD4- CD8+ cells was due to accumulation of both immature (CD3- ) and mature (CD3+) single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection

    Population dynamics of CD4+ T cells lacking Thy-1 in murine retrovirus-induced immunodeficiency syndrome (MAIDS).

    Full text link
    Increased numbers of CD4+ Thy-1- cells have been described in the spleen (SP) of mice with retrovirus-induced immunodeficiency (MAIDS). Since this phenotypic abnormality might have considerable functional importance, the expansion of the CD4+ Thy-1- subset in MAIDS was characterized further. CD4+ Thy-1- and Thy-1+ T-cells from infected mice expressed similar densities of CD3 and TCR alpha/beta. In contrast, the Thy-1- subset was uniformly CD44hi, even early in the disease when part of Thy-1+ cells were still CD44lo. The emergence of CD4+ Thy-1- cells occurred first in SP and lymph nodes and was observed later in thymus. The important fraction of CD4+ cells lacking Thy-1 normally present in Peyer's patches was only weakly modified. Despite the major expansion of the CD4+ Thy-1- phenotype, the proliferating fraction was not higher in this subset than in CD4+ Thy-1+ cells from infected mice. Persistence after hydroxyurea administration was identical in both subsets, indicating similar mean cell lifespans. Taken together, these results show that the major expansion of CD4+ Thy-1- T-cells in MAIDS is not ascribable solely to increased proliferation within this subset. Phenotypic analysis suggests that CD4+ Thy-1- cells result from the differentiation of Thy-1+ cells induced by activation signals related to retroviral infection

    Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination.

    No full text
    International audienceImmunoglobulin (Ig) genes specifically recruit activation-induced deaminase (AID) for 'on-target' DNA deamination, initiating either variable (V) region somatic hypermutation, or double-strand break intermediates of class switch recombination (CSR). Such breaks overwhelmingly undergo legitimate intra-Ig repair rather than rare illegitimate and potentially oncogenic junctions outside of Ig loci. We show that in human B cells, legitimate synapsis and repair efficiently join Ig genes whether physically linked on one chromosome or located apart on both alleles. This indicates mechanisms faithfully recognizing and/or pairing loci with homology in structure and accessibility, thus licensing interchromosomal trans-CSR junctions while usually preventing illegitimate interchromosomal recombination with AID off-target genes. Physical linkage of IgH genes in cis on the same allele just increases the likelihood of legitimate repair by another fourfold. The strongest force driving CSR might thus be recognition of legitimate target genes. Formation of IgH intra-allelic loops along this process would then constitute a consequence rather than a pre-requisite of this gene-pairing process
    corecore