18 research outputs found

    Barrier-to-Autointegration Factor Proteome Reveals Chromatin-Regulatory Partners

    Get PDF
    Nuclear lamin filaments and associated proteins form a nucleoskeletal (“lamina”) network required for transcription, replication, chromatin organization and epigenetic regulation in metazoans. Lamina defects cause human disease (“laminopathies”) and are linked to aging. Barrier-to-autointegration factor (BAF) is a mobile and essential component of the nuclear lamina that binds directly to histones, lamins and LEM-domain proteins, including the inner nuclear membrane protein emerin, and has roles in chromatin structure, mitosis and gene regulation. To understand BAF's mechanisms of action, BAF associated proteins were affinity-purified from HeLa cell nuclear lysates using BAF-conjugated beads, and identified by tandem mass spectrometry or independently identified and quantified using the iTRAQ method. We recovered A- and B-type lamins and core histones, all known to bind BAF directly, plus four human transcription factors (Requiem, NonO, p15, LEDGF), disease-linked proteins (e.g., Huntingtin, Treacle) and several proteins and enzymes that regulate chromatin. Association with endogenous BAF was independently validated by co-immunoprecipitation from HeLa cells for seven candidates including Requiem, poly(ADP-ribose) polymerase 1 (PARP1), retinoblastoma binding protein 4 (RBBP4), damage-specific DNA binding protein 1 (DDB1) and DDB2. Interestingly, endogenous BAF and emerin each associated with DDB2 and CUL4A in a UV- and time-dependent manner, suggesting BAF and emerin have dynamic roles in genome integrity and might help couple DNA damage responses to the nuclear lamina network. We conclude this proteome is a rich source of candidate partners for BAF and potentially also A- and B-type lamins, which may reveal how chromatin regulation and genome integrity are linked to nuclear structure

    Lung epithelium as a sentinel and effector system in pneumonia – molecular mechanisms of pathogen recognition and signal transduction

    Get PDF
    Pneumonia, a common disease caused by a great diversity of infectious agents is responsible for enormous morbidity and mortality worldwide. The bronchial and lung epithelium comprises a large surface between host and environment and is attacked as a primary target during lung infection. Besides acting as a mechanical barrier, recent evidence suggests that the lung epithelium functions as an important sentinel system against pathogens. Equipped with transmembranous and cytosolic pathogen-sensing pattern recognition receptors the epithelium detects invading pathogens. A complex signalling results in epithelial cell activation, which essentially participates in initiation and orchestration of the subsequent innate and adaptive immune response. In this review we summarize recent progress in research focussing on molecular mechanisms of pathogen detection, host cell signal transduction, and subsequent activation of lung epithelial cells by pathogens and their virulence factors and point to open questions. The analysis of lung epithelial function in the host response in pneumonia may pave the way to the development of innovative highly needed therapeutics in pneumonia in addition to antibiotics

    In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization.

    No full text
    With many safety and technical limitations partly mitigated through chemical modifications, antisense oligonucleotides (ASOs) are gaining recognition as therapeutic entities. The increase in potency realized by ‘third generation chemistries’ may, however, simultaneously increase affinity to unintended targets with partial sequence complementarity. However, putative hybridization-dependent off-target effects (OTEs), a risk historically regarded as low, are not being adequately investigated. Here we show an unexpectedly high OTEs confirmation rate during screening of fully phosphorothioated (PS)-LNA gapmer ASOs designed against the BACH1 transcript. We demonstrate in vitro mRNA and protein knockdown of off-targets with a wide range of mismatch (MM) and gap patterns. Furthermore, with RNase H1 activity residing within the nucleus, hybridization predicted against intronic regions of pre-mRNAs was tested and confirmed. This dramatically increased ASO-binding landscape together with relatively high potency of such interactions translates into a considerable safety concern. We show here that with base pairing-driven target recognition it is possible to predict the putative off-targets and address the liability during lead design and optimization phases. Moreover, in silico analysis performed against both primary as well as spliced transcripts will be invaluable in elucidating the mechanism behind the hepatoxicity observed with some LNA-modified gapmers

    Development and deployment of an at-home strength and conditioning program to support a phase I trial in persons with chronic spinal cord injury

    No full text
    Nonrandomized clinical trial (NCT02354625). As a part of a Phase I clinical trial to assess the safety of autologous human Schwann cells (ahSC) in persons with chronic spinal cord injury (SCI), participants engaged in a multimodal conditioning program pre- and post-ahSC transplantation. The program included a home-based strength and endurance training program to prevent lack of fitness and posttransplantation detraining from confounding potential ahSC therapeutic effects. This paper describes development, deployment, outcomes, and challenges of the home-based training program. University-based laboratory. Development phase: two men with paraplegia completed an 8-week laboratory-based 'test' of the home-based program. Deployment phase: the first four (two males, two females) participant cohort of the ahSC trial completed the program at home for 12 weeks pre and 20 weeks post ahSC transplant. Development phase: both participants improved their peak aerobic capacity (VO ) (≥17%), peak power output (PO ) (≥8%), and time to exhaustion (TTE) (≥7%). Deployment phase: pretransplant training minimally increased fitness in the two male participants (≥6% PO and ≥9% TTE). The two women had no PO changes and slight TTE changes (+2.6 and -1.2%, respectively.) All four participants detrained during the posttransplant recovery period. After posttransplant retraining, all four participants increased TTE (4-24%), three increased VO (≥11%), and two increased PO (≥7%) CONCLUSIONS: Home-based strength and condition programs can be effective and successfully included in therapeutic SCI trials. However, development of these programs requires substantial content knowledge and experience

    Lamin A/C deficiency is an independent risk factor for cervical cancer

    No full text
    In the past, cervical cancer has been linked to Human Papilloma Virus (HPV) infection. Previously, we found that pre-neoplastic breast and ovarian lesions may be associated with lamin A/C deficiency, resulting in abnormal nuclear morphologies and chromosomal instability. Ultimately, these phenomena are thought to lead to cancer. Here, we assessed lamin A/C deficiency as an indicator for the risk to develop cervical cancer. The expression of lamin A/C was assessed by Western blotting in cervical uterine smears (CUS) of 76 adult women from Benin concomitant with nuclear morphology assessment and HPV genotyping using microscopy and PCR-based assays, respectively. In vitro analyses were performed to uncover the mechanism underlying lamin A/C expression alterations observed in vivo. The presence of cervical intra-epithelial neoplasia (CIN) was assessed by colposcopy. Normal lamin A/C expression (group A) was observed in 39% of the CUS, weak lamin A/C expression (group B) was observed in 28% of the CUS and no lamin A/C expression (group C) was observed in 33% of the CUS tested. Infection with oncogenic HPV was found to be significantly higher in group C (36%) than in groups A (17%) and B (14%). Two years after our first assessment, CIN was observed in 20% of the women in group C. The in vitro application of either a histone deacetylase inhibitor (trichostatin) or a protein kinase inhibitor (staurosporine) was found to restore lamin A/C expression in cervical cancer-derived cells. Lamin A/C deficiency may serve as an independent risk factor for CIN development and as an indicator for preventive therapy in cervical cancer
    corecore