8 research outputs found

    Enhanced Luminescence of Eu-Doped TiO2Nanodots

    Get PDF
    Monodisperse and spherical Eu-doped TiO2nanodots were prepared on substrate by phase-separation-induced self-assembly. The average diameters of the nanodots can be 50 and 70 nm by changing the preparation condition. The calcined nanodots consist of an amorphous TiO2matrix with Eu3+ions highly dispersed in it. The Eu-doped TiO2nanodots exhibit intense luminescence due to effective energy transfer from amorphous TiO2matrix to Eu3+ions. The luminescence intensity is about 12.5 times of that of Eu-doped TiO2film and the luminescence lifetime can be as long as 960 μs

    Structure and Luminescence Properties of Eu3+-Doped Cubic Mesoporous Silica Thin Films

    Get PDF
    Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol–gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration

    Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors

    Get PDF
    Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions

    Lanthanide-doped semiconductor nanocrystals: electronic structures and optical properties

    No full text
    corecore