40 research outputs found

    Integrating Omic Technologies into Aquatic Ecological Risk Assessment and Environmental Monitoring: Hurdles, Achievements, and Future Outlook

    Get PDF
    Background: In this commentary we present the findings from an international consortium on fish toxicogenomics sponsored by the U.K. Natural Environment Research Council (Fish Toxicogenomics—Moving into Regulation and Monitoring, held 21–23 April 2008 at the Pacific Environmental Science Centre, Vancouver, BC, Canada). Objectives: The consortium from government agencies, academia, and industry addressed three topics: progress in ecotoxicogenomics, regulatory perspectives on roadblocks for practical implementation of toxicogenomics into risk assessment, and dealing with variability in data sets. Discussion: Participants noted that examples of successful application of omic technologies have been identified, but critical studies are needed to relate molecular changes to ecological adverse outcome. Participants made recommendations for the management of technical and biological variation. They also stressed the need for enhanced interdisciplinary training and communication as well as considerable investment into the generation and curation of appropriate reference omic data. Conclusions: The participants concluded that, although there are hurdles to pass on the road to regulatory acceptance, omics technologies are already useful for elucidating modes of action of toxicants and can contribute to the risk assessment process as part of a weight-of-evidence approach

    4-(4-nitrobenzyl)pyridine tests for alkylating agents following chemical oxidative activation

    Full text link
    A chemical activation system (CAS) designed to mimic the mammalian mixed-function oxidase enzymes was found to activate target compounds to reactive electrophiles. Activated compounds were assayed by reaction with 4-(4-nitrobenzyl)pyridine (NBP). A model nucleophile of 7-alkylguanine of nucleic acids, NBP produces a violet color following alkylation. Twenty compounds from several chemical classes were tested. The test generally gave positive and negative responses where expected. Two compounds, trichloroethylene and diethylnitrosamine, exhibited a linear Beer's law relationship in the concentration range tested. A high degree of linear correlation (r>0.97) was obtained for these compounds. Other compounds showed varying degrees of linear correlation from high correlation (r=0.94) to weak correlation (r=0.44). The CAS-NBP assay results were compared to bacterial mutagenicity and animal carcinogenicity test results when information was available. A good correlation (r=0.80) existed between direct alkylating activity and direct mutagenicity. Similar correlations existed between NBP alkylation following activation and mutagenicity following microsomal activation (r=0.73). Also, different correlations were observed between carcinogenicity and NBP alkylation following activation (r=0.69) and without activation (r=0.38).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48076/1/244_2004_Article_BF00213289.pd
    corecore