2 research outputs found

    Giemsa-stained thick blood films as a source of DNA for Plasmodium species-specific real-time PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study describes the use of thick blood films (TBF) as specimens for DNA amplification with the <it>Plasmodium </it>species-specific real-time PCR that was recently validated on whole blood samples.</p> <p>Methods</p> <p>The panel of 135 Giemsa-stained clinical TBFs represented single infections of the four <it>Plasmodium </it>species with varying parasite densities or only gametocytes, mixed infections, and negative samples and was stored for up to 12 years. Half of the Giemsa-stained TBF was scraped off by a sterile scalpel and collected into phosphate buffered saline. DNA was extracted with the Qiagen DNA mini kit with minor modifications. DNA was amplified with the 18S rRNA real-time PCR targeting the four <it>Plasmodium </it>species with four species-specific primers and probes in combination with one genus-specific reverse primer. Results of the PCR on TBF were compared to those of the PCR on whole blood and to microscopy.</p> <p>Results</p> <p>Correct identification for single species infections was obtained for all TBF samples with <it>Plasmodium falciparum </it>(n = 50), <it>Plasmodium vivax </it>(n = 25), <it>Plasmodium ovale </it>(n = 25) and in all but one samples with <it>Plasmodium malariae </it>(n = 10). Compared to whole blood samples, higher Ct-values were observed by PCR on TBF with a mean difference of 5.93. Four out of five mixed infections were correctly identified with PCR on TBF. None of the negative samples (n = 20) gave a PCR signal. PCR on TBF showed a detection limit of 0.2 asexual parasites/μl compared to 0.02/μl for whole blood. Intra-run variation was higher for PCR on TBF (%CV 1.90) compared to PCR on whole blood (%CV 0.54). Compared to microscopy, PCR on TBF generated three more species identifications in samples containing a single species and detected the same four mixed-infections.</p> <p>Conclusions</p> <p>Giemsa-stained TBFs are a reliable source of DNA for <it>Plasmodium </it>real-time PCR analysis, allowing applications in reference and research settings in case whole blood samples are not available.</p

    Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study describes the use of malaria rapid diagnostic tests (RDTs) as a source of DNA for <it>Plasmodium </it>species-specific real-time PCR.</p> <p>Methods</p> <p>First, the best method to recover DNA from RDTs was investigated and then the applicability of this DNA extraction method was assessed on 12 different RDT brands. Finally, two RDT brands (OptiMAL Rapid Malaria Test and SDFK60 malaria Ag <it>Plasmodium falciparum</it>/Pan test) were comprehensively evaluated on a panel of clinical samples submitted for routine malaria diagnosis at ITM. DNA amplification was done with the 18S rRNA real-time PCR targeting the four <it>Plasmodium </it>species. Results of PCR on RDT were compared to those obtained by PCR on whole blood samples.</p> <p>Results</p> <p>Best results were obtained by isolating DNA from the proximal part of the nitrocellulose component of the RDT strip with a simple DNA elution method. The PCR on RDT showed a detection limit of 0.02 asexual parasites/μl, which was identical to the same PCR on whole blood. For all 12 RDT brands tested, DNA was detected except for one brand when a low parasite density sample was applied. In RDTs with a plastic seal covering the nitrocellulose strip, DNA extraction was hampered. PCR analysis on clinical RDT samples demonstrated correct identification for single species infections for all RDT samples with asexual parasites of <it>P. falciparum </it>(n = 60), <it>Plasmodium vivax </it>(n = 10), <it>Plasmodium ovale </it>(n = 10) and <it>Plasmodium malariae </it>(n = 10). Samples with only gametocytes were detected in all OptiMAL and in 10 of the 11 SDFK60 tests. None of the negative samples (n = 20) gave a signal by PCR on RDT. With PCR on RDT, higher Ct-values were observed than with PCR on whole blood, with a mean difference of 2.68 for OptiMAL and 3.53 for SDFK60. Mixed infections were correctly identified with PCR on RDT in 4/5 OptiMAL tests and 2/5 SDFK60 tests.</p> <p>Conclusions</p> <p>RDTs are a reliable source of DNA for <it>Plasmodium </it>real-time PCR. This study demonstrates the best method of RDT fragment sampling for a wide range of RDT brands in combination with a simple and low cost extraction method, allowing RDT quality control.</p
    corecore