28 research outputs found

    Topoisomerase II alpha gene copy loss has adverse prognostic significance in ERBB2-amplified breast cancer: a retrospective study of paraffin-embedded tumor specimens and medical charts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amplification of the <it>ERBB2 </it>(<it>Her-2/neu</it>) oncogene, which occurs in approximately 25% of breast carcinomas, is a known negative prognostic factor. Available data indicate that a variable number of nearby genes on chromosome 17q may be co-amplified or deleted, forming a continuous amplicon of variable size. In approximately 25% of these patients, the amplicon extends to the gene for <it>topoisomerase II alpha </it>(<it>TOP2A</it>), a target for anthracyclines. We sought to understand the significance of these associated genomic changes for breast cancer prognosis and predicting response to therapy.</p> <p>Methods and patients</p> <p>Archival tissue samples from 63 breast cancer patients with <it>ERBB2 </it>amplification, stages 0–IV, were previously analyzed with FISH probes for genes located near <it>ERBB2</it>. In the present study, the clinical outcome data were determined for all patients presenting at stages I–III for whom adequate clinical follow up was available.</p> <p>Results</p> <p>Four amplicon patterns (Classes) were identified. These were significantly associated with the clinical outcome, specifically, recurrence of breast cancer. The Amplicon class IV with deleted <it>TOP2A </it>had 67% (6/9) cases with recurrence, whereas the other three classes combined had only 12% (3/25) cases (p-value = 0.004) at the time of last follow-up. <it>TOP2A </it>deletion was also significantly associated with time to recurrence (p-value = 0.0002). After adjusting for age in Cox regression analysis, the association between <it>TOP2A </it>deletion and time to recurrence remains strongly significant (p-value = 0.002) whereas the association with survival is marginally significant (p-value = 0.06).</p> <p>Conclusion</p> <p><it>TOP2A </it>deletion is associated with poor prognosis in <it>ERBB2</it>-amplified breast carcinomas. Clarification of the mechanism of this association will require additional study.</p

    High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldINTRODUCTION: HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group, needed to be further characterized in large sample sets. METHODS: Genome-wide DNA copy number profiling, using bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH), and global gene expression profiling were performed on 200 and 87 HER2+ tumors, respectively. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number alterations (CNAs) in HER2+ tumors, which were related to a set of 554 non-HER2 amplified (HER2-) breast tumors. High-resolution oligonucleotide aCGH was used to delineate the 17q12-q21 region in high detail. RESULTS: The HER2-amplicon was narrowed to an 85.92 kbp region including the TCAP, PNMT, PERLD1, HER2, C17orf37 and GRB7 genes, and higher HER2 copy numbers indicated worse prognosis. In 31% of HER2+ tumors the amplicon extended to TOP2A, defining a subgroup of HER2+ breast cancer associated with estrogen receptor-positive status and with a trend of better survival than HER2+ breast cancers with deleted (18%) or neutral TOP2A (51%). HER2+ tumors were clearly distinguished from HER2- tumors by the presence of recurrent high-level amplifications and firestorm patterns on chromosome 17q. While there was no significant difference between HER2+ and HER2- tumors regarding the incidence of other recurrent high-level amplifications, differences in the co-amplification pattern were observed, as shown by the almost mutually exclusive occurrence of 8p12, 11q13 and 20q13 amplification in HER2+ tumors. GISTIC analysis identified 117 significant CNAs across all autosomes. Supervised analyses revealed: (1) significant CNAs separating HER2+ tumors stratified by clinical variables, and (2) CNAs separating HER2+ from HER2- tumors. CONCLUSIONS: We have performed a comprehensive survey of CNAs in HER2+ breast tumors, pinpointing significant genomic alterations including both known and potentially novel therapeutic targets. Our analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer

    Present and future evolution of advanced breast cancer therapy

    Get PDF
    Although the introduction of novel therapies and drug combinations has improved the prognosis of metastatic breast cancer, the disease remains incurable. Increased knowledge of the biology and the molecular alterations in breast cancer has facilitated the design of targeted therapies. These agents include receptor and nonreceptor tyrosine kinase inhibitors (epidermal growth factor receptor family), intracellular signaling pathways (phosphatidylinositol-3-kinase, AKT, mammalian target of rapamycin) angiogenesis inhibitors and agents that interfere with DNA repair (poly(ADP-ribose) polymerase inhibitors). In the present review, we present the most promising studies of these new targeted therapies and novel combinations of targeted therapies with cytotoxic agents

    A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications

    Full text link

    Toward precision medicine of breast cancer

    Full text link
    corecore