6 research outputs found
Mutually Positive Regulatory Feedback Loop between Interferons and Estrogen Receptor-α in Mice: Implications for Sex Bias in Autoimmunity
gene) and stimulates expression of target genes. female mice had relatively higher steady-state levels of mRNAs encoded by the IFN and ERα-responsive genes as compared to the age-matched males.Our observations identify a novel mutually positive regulatory feedback loop between IFNs and ERα in immune cells in mice and support the idea that activation of this regulatory loop contributes to sex bias in SLE
Differential Roles of Estrogen Receptors α and β in Control of B-Cell Maturation and Selection
It is clear that estrogen can accelerate and exacerbate disease in some lupus-prone mouse strains. It also appears that estrogen can contribute to disease onset or flare in a subset of patients with lupus. We have previously shown estrogen alters B-cell development to decrease lymphopoiesis and increase the frequency of marginal zone B cells. Furthermore, estrogen diminishes B-cell receptor signaling and allows for the increased survival of high-affinity DNA-reactive B cells. Here, we analyze the contribution of estrogen receptor α or β engagement to the altered B-cell maturation and selection mediated by increased exposure to estrogen. We demonstrate that engagement of either estrogen receptor α or β can alter B-cell maturation, but only engagement of estrogen receptor α is a trigger for autoimmunity. Thus, maturation and selection are regulated differentially by estrogen. These observations have therapeutic implications