5,528 research outputs found

    Triphasic nature of polymers of intrinsic microporosity (PIM-1 and PIM-PY) induces storage and catalysis effects in hydrogen and oxygen reactivity at electrode surfaces

    Get PDF
    Hydrogen oxidation and oxygen reduction are two crucial energy conversion reactions, which are shown to be both strongly affected by the presence of intrinsically microporous polymer coatings on electrodes. Polymers of intrinsic microporosity (PIMs) are known to possess extremely high internal surface area and ability to bind gases under dry conditions. It is shown here that both, hydrogen‐ and oxygen gas binding into PIMs, also occurs under wet or “triphasic” conditions in aqueous electrolyte environments (when immersed in 0.01 M phosphate buffer at pH 7). For two known PIM materials (PIM‐1 and PIM‐PY), nanoparticles are formed by an anti‐solvent precipitation protocol and then cast as a film onto platinum or glassy carbon electrodes. Voltammetry experiments reveal evidence for hydrogen and oxygen binding. Both, PIM‐1 and PIM‐PY, locally store hydrogen or oxygen gas at the electrode surface and thereby significantly affect electrocatalytic reactivity. The onset of oxygen reduction on glassy carbon is shifted by 0.15 V in the positive direction

    High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    Get PDF
    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated

    Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating

    Get PDF
    Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies addressed the general operation of graphene-based photo-thermoelectric devices, and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster time scale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 femtoseconds. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 femtosecond laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity between 500 and 1500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.Comment: 6 pages, 4 figure

    Clinical and genetic spectrum of a Chinese cohort with SCN4A gene mutations

    Get PDF
    Skeletal muscle sodium channelopathies due to SCN4A gene mutations have a broad clinical spectrum. However, each phenotype has been reported in few cases of Chinese origin. We present detailed phenotype and genotype data from a cohort of 40 cases with SCN4A gene mutations seen in neuromuscular diagnostic service in Huashan hospital, Fudan University. Cases were referred from 6 independent provinces from 2010 to 2018. A questionnaire covering demographics, precipitating factors, episodes of paralysis and myotonia was designed to collect the clinical information. Electrodiagnostic studies and muscle MRI were retrospectively analyzed. The clinical spectrum of patients included: 6 Hyperkalemic periodic paralysis (15%), 18 Hypokalemic periodic paralysis (45%), 7 sodium channel myotonia (17.5%), 4 paramyotonia congenita (10%) and 5 heterozygous asymptomatic mutation carriers (12.5%). Review of clinical information highlights a significant delay to diagnosis (median 15 years), reports of pain and myalgia in the majority of patients, male predominance, circadian rhythm and common precipitating factors. Electrodiagnostic studies revealed subclinical myotonic discharges and a positive long exercise test in asymptomatic carriers. Muscle MRI identified edema and fatty infiltration in gastrocnemius and soleus. A total of 13 reported and 2 novel SCN4A mutations were identified with most variants distributed in the transmembrane helix S4 to S6, with a hotspot mutation p.Arg675Gln accounting for 32.5% (13/40) of the cohort. Our study revealed a higher proportion of periodic paralysis in SCN4A-mutated patients compared with cohorts from England and the Netherlands. It also highlights the importance of electrodiagnostic studies in diagnosis and segregation studies

    Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves

    Get PDF
    peer-reviewedBackground There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. Results There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, the cell mediated immune response observed didn’t show any significant rise in any of the treatment groups. Conclusion Calves administered the intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak

    Electron quantum metamaterials in van der Waals heterostructures

    Full text link
    In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques -- for example in the unique coloring of butterfly wings -- to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer sub-electron wavelength (as well as wavelength-scale) structuring of electronic matter, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures -- e.g., mechanical pick-up/transfer assembly -- atomic scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length-scales (such as electron wavelength, screening length, and electron mean free path). Yet electronic metamaterials promise far richer categories of behavior than those found in conventional optical metamaterial technologies. This is because unlike photons that scarcely interact with each other, electrons in subwavelength structured metamaterials are charged, and strongly interact. As a result, an enormous variety of emergent phenomena can be expected, and radically new classes of interacting quantum metamaterials designed

    Biological diversification linked to environmental stabilization following the Sturtian Snowball glaciation

    Get PDF
    The body fossil and biomarker records hint at an increase in biotic complexity between the two Cryogenian Snowball Earth episodes (ca. 661 million to ≀650 million years ago). Oxygen and nutrient availability can promote biotic complexity, but nutrient (particularly phosphorus) and redox dynamics across this interval remain poorly understood. Here, we present high-resolution paleoredox and phosphorus phase association data from multiple globally distributed drill core records through the non-glacial interval. These data are first correlated regionally by litho- and chemostratigraphy, and then calibrated within a series of global chronostratigraphic frameworks. The combined data show that regional differences in postglacial redox stabilization were partly controlled by the intensity of phosphorus recycling from marine sediments. The apparent increase in biotic complexity followed a global transition to more stable and less reducing conditions in shallow to mid-depth marine environments and occurred within a tolerable climatic window during progressive cooling after post-Snowball super-greenhouse conditions

    Association of Traffic-Related Air Pollution with Children’s Neurobehavioral Functions in Quanzhou, China

    Get PDF
    http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000270874101349&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Public, Environmental &amp; Occupational HealthSCI(E)CPCI-S(ISTP)06S228-S2292
    • 

    corecore